

Measurements of the CP structure of Higgs boson couplings with the ATLAS detector

Marcos Miralles López on behalf of the ATLAS Collaboration

Introduction

- In general, additional **CP-violation** sources are needed to explain matter-antimatter asymmetry
 - Would be clear evidence of physics beyond the SM
- SM predicts a CP-even scalar Higgs boson $I^{CP} = 0^{++}$
- ► Today:
 - ► **Bosonic couplings**: *HVV* (based on EFT approach)
 - ▶ Fermionic couplings: direct *Hff* couplings

CPV in the Higgs sector

Bosonic couplings

- Modelled by higher-order-mass dimension terms in EFT
- Suppressed by powers in expansion scale Λ
- ► Explored in VBF prod., $H \rightarrow WW$ and $H \rightarrow ZZ$ decay channels

$$\mathcal{L}_{VVH} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda^2} \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

Fermionic couplings

- CP-odd terms enter at the sameorder as CP-even terms
- Explored in $t\overline{t}H/tH$ production and $H \to \tau\tau$ decay channel
- Parameterised with a CP-mixing angle

$$\mathcal{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f(\cos \alpha + i \gamma_5 \sin \alpha) \psi_f$$

CPV in VBF prod. and Higgs 4l decay

- CP-odd effects in VBF production and $H \rightarrow ZZ^* \rightarrow 4l$ decay using SMEFT *optimal observables*
- Three PL fits depending on sensitivity to observable
 - Decay-only: Inclusive SR + ZZ* sidebands –
 dominated by ggF events
 - Production-only: Further split on VBF regions using a NN to discriminate VBF, VH and ggF
 - Combined: targets BSM signatures sensitive to both production and decay
- EFT shape-only analysis, ∴ independent from potential
 BSM rate changes

Reconstruction level limit extraction

Optimal observables (00) are built from the SM-BSM interference term which dominates

Differential 00 cross-section results

- Unfolded differential 00 cross-sections to fiducial phase space
- Simultaneous PL fits to m_{4l} in each bin, for each distributed observable

CERN-EP-2023-030

VBF production fiducial cross-section

- Definition of VBF-enriched fiducial regions
- Two fiducial fits:
 - With ggF as part of signal model independent result \rightarrow 60% VBF purity $\sigma = 0.215^{+0.075}_{-0.063} \, ^{+0.016}_{-0.013}$ fb
 - Without ggF subtracting MC expectation introduces model dependency \rightarrow 95% VBF purity $\sigma = 0.172^{+0.072}_{-0.062} ^{+0.016}_{-0.018}$ fb
- Larger observed cross-sections than expected but SM compatible

- CP-odd effects in VBF production $H \rightarrow \gamma \gamma$ using SMEFT optimal observables
- Two BDTs are used to enhance VBF signal and define 3 SRs

- VBF signal yields in 00 bins is extracted with simultaneous PL fit to $m_{\gamma\gamma}$ spectra

- NNL scans performed in combination to previous $H \to \tau\tau$ [Ref.] result
- Limits driven by interference terms

$t\overline{t}H/tH$ production with $H \rightarrow b\overline{b}$

- Top Yukawa coupling is the largest in the SM, ideal place to search for BSM
- Two BDTs are used to enhance $t\bar{t}H$ signal in SRs: reconstruction and classification BDTs

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_t y_t \phi \bar{\psi}_t (\cos \alpha + i\gamma_5 \sin \alpha) \psi_t,$$

- Reconstruction BDT: assign jets from Higgs/top decays
- Classification BDT: discriminate $t\bar{t}H$ signal

$t\overline{t}H/tH$ production with $H \rightarrow b\overline{b}$

Two observables are used to provide best discrimination in SRs

$$b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1||\vec{p}_2|},$$

- Indexes 1,2 denote the two top quarks
- Unit vector \hat{n} points in the direction of beam line

$t\bar{t}H/tH$ production with $H \rightarrow bb$

• Best-fit $\alpha = 11^{\circ +52^{\circ}}_{-73^{\circ}}$ at 68%CL and pure CP-odd coupling is excluded at 1.2 σ

CP properties in $H \rightarrow \tau \tau$

- Signed acoplanarity angle, φ_{CP}^* , between τ -lepton decay planes used as a proxy for CP-mixing angle
 - Planes are spanned by impact parameter (IP) or τ decay products spatial momenta (π^{\pm}, π^0)

Split in relative dominance of decay channel

CP properties in $H \rightarrow \tau \tau$

- Best-fit $\phi_t = 9^{\circ} \pm 16^{\circ}$ at 68%CL and pure CP-odd coupling is excluded at 3.4 σ
- Normalisation is free-floated → EFT shape-only analysis

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\upsilon} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau) H,$$

Summary

- Constrained possible new CPV sources in HVV and Hff couplings with Run 2 data
- ▶ New possibilities to perform **combinations** over multiple channels
- Most analysis dominated by statistical uncertainties
 - ► Interesting prospects for **Run 3** analysis
- ► Results shown are compatible with SM expectation
- No clear sign of CPV in Higgs sector yet but still room to explore
 - ▶ Pure CP-odd coupling are excluded $> 3\sigma$

Backup

SR and CR event categorisation

CPV in VBF prod. and Higgs 4l decay

Table 1: The expected and observed confidence intervals at 68% and 95% CL for the CP-odd Wilson coefficients for an integrated luminosity of 139 fb⁻¹ at $\sqrt{s} = 13$ TeV. Only one Wilson coefficient is fitted at a time while all others are set to zero. The observed best fit value and p-value for agreement with the SM is provided. The last column indicates whether the limits come from production (prod), decay or a combination of production and decay (comb). All couplings scale as $1/\Lambda^2$ with the assumed value of $\Lambda = 1$ TeV.

EFT coupling	Expected		Observed		Best-fit	SM	Fit type
parameter	68% CL	95% CL	68% CL	95% CL	value	p-value	
$c_{H\widetilde{B}}$	[-0.18, 0.19]	[-0.37, 0.37]	[-0.42, 0.31]	[-0.61, 0.54]	-0.078	0.86	decay
$c_{H\widetilde{W}B}$	[-0.36, 0.36]	[-0.72, 0.72]	[-0.56, 0.53]	[-0.97, 0.98]	-0.017	0.99	decay
$c_{H\widetilde{W}}$	[-0.63, 0.63]	[-1.26, 1.28]	[-0.07, 1.09]	[-0.81, 1.54]	0.60	0.37	comb
\widetilde{d}	[-0.009, 0.009]	[-0.018, 0.018]	[-0.017, 0.014]	[-0.026,0.025]	-0.003	0.86	decay
\widetilde{c}_{zz}	[-0.77, 0.79]	[-2.4, 2.4]	[0.37, 1.21]	[-1.20, 1.75]	0.78	0.11	prod
$\widetilde{c}_{z\gamma}$	[-0.47, 0.47]	[-0.76, 0.76]	[-0.54, 0.54]	[-0.84, 0.83]	0.083	0.93	decay
$\widetilde{c}_{\gamma\gamma}$	[-0.38, 0.38]	[-0.76, 0.77]	[-0.52, 0.48]	[-0.99, 0.93]	-0.01	0.99	decay

VBF production fiducial cross-section

VBF-enriched	Signal for cross-	Purity of	Expected	Observed	
region	section estimates	VBF signal	cross-section [fb]	cross-section [fb]	
$N_{\rm jets} \ge 2, \ m_{jj} \ge 400 \text{ GeV}$	All production modes	59 %	$0.134^{+0.065}_{-0.053} {}^{+0.014}_{-0.012}$	$0.215^{+0.075}_{-0.063} {}^{+0.016}_{-0.013}$	
$ \Delta \eta_{jj} \ge 3.0$	VBF + VH + ttH	95 %	$0.088^{+0.063}_{-0.053} {}^{+0.017}_{-0.020}$	$0.172^{+0.072}_{-0.062} {}^{+0.016}_{-0.018}$	

- First L/T corresponds to
 VBF/ggF BDT discriminant
- Second L/T corresponds to VBF/Cont. discriminant

$t\bar{t}H/tH$ production with $H \rightarrow \gamma\gamma$

- Top Yukawa coupling is the largest in the SM, ideal place to search for BSM
- Two BDTs are used to enhance ttH signal in Lep and Had SRs
- Additional BDT to reconstruct top candidate

$t\bar{t}H/tH$ production with $H \rightarrow \gamma\gamma$

- 1D and 2D limits on CP-mixing angle
- $\alpha < |43|^{\circ}$ at 95%CL and pure CP-odd coupling is excluded at 3.9 σ

$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha) \gamma_5] \psi_t \} H$$

CP properties in H o au au

Notation	Decay mode	Branching fraction
ℓ	$\ell^{\pm}ar{ u} u$	35.2%
1p0n	$h^{\pm} v \; (\pi^{\pm} v)$	11.5% (10.8%)
1p1n	$h^{\pm}\pi^{0}\nu\;(\pi^{\pm}\pi^{0}\nu)$	25.9% (25.5%)
1pXn	$h^{\pm} \geq 2\pi^0 \nu \; (\pi^{\pm} 2\pi^0 \nu)$	10.8% (9.3%)
3p0n	$3h^{\pm}v~(3\pi^{\pm}v)$	9.8% (9.0%)

Decay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays
	ℓ–1p0n	IP	8.1%
$ au_{ m lep} au_{ m had}$	ℓ–1p1n	IP $-\rho$	18.3%
	ℓ–1pXn	$\text{IP-}\rho$	7.6%
	ℓ–3p0n	$IP-a_1$	6.9%
$ au_{ m had} au_{ m had}$	1p0n-1p0n	IP	1.3%
	1p0n-1p1n	IP $-\rho$	6.0%
	1p1n-1p1n	ρ	6.7%
	1p0n-1pXn	IP $-\rho$	2.5%
	1p1n-1pXn	ho	5.6%
	1p1n-3p0n	ρ - a_1	5.1%

CP properties in $H \rightarrow \tau \tau$

Combined post-fit φ_{CP}^* distribution in all decay channels

