

Measurement of Higgs boson differential and fiducial cross sections with the ATLAS detector

30.03.2023,

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects **Anamika Aggarwal**

INTRODUCTION

The Higgs Boson has been discovered in 2012 by both ATLAS and CMS experiments at the LHC, CERN.

What after that?

- precise measurements of the properties of the Higgs Boson.
- investigate new methods to probe SM predictions and to test for the presence of **new** physics.

Differential and fiducial cross sections of Higgs Bosons in different production and decay channels:

- → Deviations of Higgs properties from SM.
- ➡ Enhance sensitivity to BSM (Beyond SM) effects.
- ⇒ Effects of higher-order corrections in perturbative theory.
- → Provide constraints on different couplings.
- → Different Higgs properties probed via different variables.

JG U

$H \rightarrow \gamma \gamma$

- Inclusive fiducial cross section: $\sigma_{\text{fid}} = 67 \pm 5 \text{ (stat.)} \pm 4 \text{ (sys.)}$ fb
- $\sigma_{\text{fid,SM}} = 64 \pm 4 \,\text{fb}$

- Differential fiducial cross sections:
 - 20 differential cross-sections and 4 double-differential cross-sections in inclusive diphoton fiducial region.
 - 4 differential cross-sections and 1 double-differential cross-section in VBF-enhanced region.
 - Different variables sensitive to:
 - Higgs boson production kinematics,
 - jet kinematics,
 - spin, and CP quantum numbers of the Higgs Boson,
 - VBF kinematics and CP properties.
 - New measurement of the cross-section in the high $p_T^{\gamma\gamma}$ region:
 - Strongest limits to date for the Higgs boson production cross-section above 450 GeV.
 - All differential cross-sections compared with various SM predictions: No significant deviations found.

Variable $p_{\mathrm{T}}^{\gamma\gamma}$ $|y_{\gamma\gamma}|$ $p_{\mathrm{T}}^{\gamma 2}/m_{\gamma \gamma}$ $N_{\rm jets}$ $N_{b\text{-jets}}$ $p_{\mathrm{T}}^{j_1}$ H_{T} $p_{\mathrm{T}}^{\gamma\gamma j}$ $m_{\gamma\gamma j}$ $\tau_{C,j1}$ $\sum \tau_{C,j}$ $p_{\mathrm{T}}^{\gamma\gamma,\,\mathrm{jet}\,\mathrm{veto}\,30\,\mathrm{GeV}}$ m_{ii} $\Delta \phi_{ii}$ $\pi - |\Delta\phi_{\gamma\gamma,jj}|$ $p_{\mathrm{T},\gamma\gamma jj}$ VBF-enhanced: $p_{\rm T}^{J_1}$ VBF-enhanced: $\Delta \phi_{ii}$ VBF-enhanced: $|\eta^*|$ VBF-enhanced: $p_{T,\gamma\gamma jj}$ $p_{\rm T}^{\gamma\gamma}$ vs $|y_{\gamma\gamma}|$ $(p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma \gamma} \text{ vs } (p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma \gamma}$

$$p_{\rm T}^{\gamma\gamma}$$
 vs $p_{\rm T}^{\gamma\gamma j}$

$$p_{\mathrm{T}}^{\gamma\gamma}$$
 vs $au_{C,j1}$

VBF-enhanced: $p_{\rm T}^{j_1}$ vs $\Delta \phi_{jj}$

Interpretations:

- Measured transverse momentum distribution of the Higgs boson is used as an indirect probe of the Yukawa coupling of the Higgs boson to the bottom and charm quarks.
 - 95% CL allowed range [-3.7, 10.4] for κ_b , and [-13.0, 18.9] for κ_c , using only the shape of transverse momentum distribution.
- 2. Strength and tensor structure of the Higgs boson interactions investigated using 5 variables in the effective field theory framework: $p_{\rm T}^{\gamma\gamma}$, $N_{\rm jets}$, m_{jj} , $\Delta\phi_{jj}$ and $p_{\rm T}^{j_1}$
 - Constrain anomalous Higgs boson couplings to vector bosons in the Standard Model effective field theory framework.

More Interpretations in combination with $H \rightarrow ZZ^* \rightarrow 4l$ on slide 8!

Limits on SMEFT Wilson coefficients using SM and dimension-6 operators interference-only terms

VBF-enriched	Signal for cross-	Purity of	Expected	Observed
region	section estimates	VBF signal	cross-section [fb]	cross-section [fb]
$N_{\rm jets} \ge 2, \ m_{jj} \ge 400 \ {\rm GeV}$	All production modes	59 %	$0.134^{+0.065}_{-0.053} {}^{+0.014}_{-0.012}$	$0.215^{+0.075}_{-0.063} {}^{+0.016}_{-0.013}$
$ \Delta\eta_{jj} \ge 3.0$	VBF + VH + ttH	95 %	$0.088^{+0.063}_{-0.053} {}^{+0.017}_{-0.020}$	$0.172^{+0.072}_{-0.062} {}^{+0.016}_{-0.018}$

- Same-flavour opposite-charge (SFOC) lepton pairs selected to form Higgs boson candidates.
- All major background processes estimated from data.
- Differential fiducial cross sections measured for a variety of observables sensitive to the production and decay of the Higgs boson.
- Signal events are corrected for detector measurement inefficiency and resolution by unfolding using the detector response matrix in the likelihood fit.
- Unfolding matrix used is well conditioned and no regularisation is required.
- An inclusive cross section in a VBF fiducial phase space is also measured.
- All measurements in agreement with the SM predictions.

arxiv:2004.03969

$H \rightarrow ZZ^* \rightarrow 41$

Results used to constrain anomalous Higgs boson interactions with SM particles:

- 1. m_{12} vs. m_{34} double differential cross section used to probe several BSM scenarios within the framework of pseudo-observables
 - riangleright new and more stringent constraints on BSM scenarios where contact term interactions in the $H \rightarrow 4l$ amplitudes are set.
- 2. p⁴¹ differential cross section used to constrain the Yukawa couplings of the Higgs boson with the b- and c-quarks
 - ▶ values of κ_c outside the range $\kappa_c \in [-12, +11]$ are excluded at 95% CL.

Observed limits on the modified Higgs boson decays within the linear EFT-inspired framework of the pseudo-observables

JG|U

Combined $H \rightarrow ZZ^* \rightarrow 41$ and $H \rightarrow \gamma\gamma$

- Measurements are extrapolated to the full phase space and the measured cross-sections are compared with SM predictions.
- Additional systematic uncertainties introduced by the extrapolation to the full phase space are
 counterbalanced by a significant reduction of the statistical uncertainty of the measurement (main limitation
 to the precision of the measurements in the individual decay channels).
- Total Higgs boson production cross-section: $55.5^{+4.0}_{-3.8}$ pb $(\pm 3.2 (stat.) ^{+2.4}_{-2.2} (syst.))$

$$\sigma_{\rm fid,SM} = 55.6 \pm 2.8 \text{ pb}$$

- Differential cross-sections:
 - $\rightarrow |y_H|$ sensitive to perturbative QCD calculations
 - $ightharpoonup p_{\mathrm{T}}^H$ sensitive to the parton distribution functions (PDF)
 - $\sim N_{\rm jets}$ and $p_{\rm T}^{\rm lead.~jet}$ probe the theoretical modelling of high- $p_{\rm T}$ QCD radiation in Higgs boson production

All results from the two decay channels are compatible with each other, and their combination agrees with the Standard Model predictions.

Combined $H \to ZZ^* \to 41$ and $H \to \gamma\gamma$

 p_{T}^{H} shape and

normalisation

p_T shape

Constraints on the b- and c-quark Yukawa couplings

- 1. Constraints from the Higgs boson transverse momentum distributions
 - A joint interpretation, in terms of the b- and c-quark Yukawa coupling strengths to the Higgs boson, of the fiducial differential cross-sections measured as a function of p_T^H
- 2. Combination with the constraints from $VH(bb^{-})$ and $VH(cc^{-})$ production
 - constraints set on the charm quark coupling modifier without any assumption on the bottom quark coupling.
 - Represent the most stringent constraints on κ_c to date in these scenarios.

Scenario	Observed 68% confidence interval	Observed 95% confidence interval
$B_{\rm BSM}=0$	[-1.61, 1.70]	[-2.47, 2.53]
No assumption on B_{BSM}	[-2.63, 3.01]	[-4.46, 4.81]

Assuming SM values of other couplings (κ)

Parameter	Observed 95% confidence interval	Expected 95% confidence interval	
К _Б К _С	$[-1.09, -0.86] \cup [0.81, 1.09]$ [-2.27, 2.27]	$[-1.14, -0.92] \cup [0.86, 1.15]$ [-2.77, 2.75]	
<i>К</i> _{<i>b</i>}	[-2.0, 7.4] [-8.6, 17.3]	[-2.0, 7.4] [-8.5, 15.9]	

$H \rightarrow \gamma \gamma + X$

- Model-independent search for new physics leading to final states containing $H \to \gamma \gamma$ decays.
- Search examines 22 final states categorized by the objects that are produced in association with the Higgs boson.
- Objects include
 - isolated electrons or muons,
 - hadronically decaying τ -leptons,
 - additional photons,
 - missing transverse momentum,
 - hadronic jets, as well as jets that are tagged as containing a b-hadron.
- No significant excesses above Standard Model expectations are observed.

Enables interpretation of the results as a constraint on other models.

$$H(bb) + E_{T}^{miss}$$

- First measurement of the fiducial cross-section of VH production (V=W,Z) in final states with missing transverse momentum where H → bb.
- Cross-sections are reported for two intervals of missing transverse momentum, 150 ≤ E_Tmiss < 250 GeV and E_Tmiss ≥ 250 GeV.
- Results complement current cross-section measurements performed in the STXS framework, and provide a new way to probe H → bb decays.
- Measured fiducial cross section are in agreement with the SM expectations.

 $150 \le E_T$ miss < 250 GeV bin: 5.5 ± 2.6 (stat.) ± 3.2 (syst.) fb

 $E_T^{miss} \ge 250 \text{ GeV bin: } 1.9 \pm 0.7 \text{ (stat.)} \pm 0.4 \text{ (syst.) fb}$

ATLAS-CONF-2022-015

ggF $H \rightarrow WW^* \rightarrow ev\mu v$

- Differential cross sections are measured in a fiducial phase space restricted to the production of at most one additional jet.
- Various observables in one and two-dimensions are measured which probe different properties of the Higgs Boson:
 - Higher-order QCD contributions to ggF production.
 - The spin structure and CP properties.
 - PDFs relevant for Higgs boson production.
 - Yukawa couplings of quarks and the Higgs boson.
- Signal region is defined using reconstructed objects and fiducial region is defined using particle-level objects.
- Fit is performed using the profile likelihood method.
- A signal region is defined for each bin of each observable, from which the number of signal events $N_{\rm S}$ is extracted from a fit to the data.
- A combined fit is performed in the m_T distribution in the range 80 to 160 GeV in bins of 10 GeV.

$p_{ m H}^{ m T}$
$M_{\ell\ell}$
$p_{\ell\ell}^{\rm T}$
Уℓℓ
$\Delta\phi_{\ell\ell}$
$\cos \theta^*$
$\overline{p_{\ell 0}^{\rm T}}$
У J0
$M_{\ell\ell}$ versus $N_{\rm jet}$
$p_{\ell\ell}^{\rm T}$ versus $N_{\rm jet}$
$y_{\ell\ell}$ versus $N_{\rm jet}$
$\Delta \phi_{\ell\ell}$ versus $N_{\rm jet}$
$\cos \theta^*$ versus $N_{\rm jet}$
$p_{\ell 0}^{\mathrm{T}}$ versus N_{jet}

ggF $H \rightarrow WW^* \rightarrow ev\mu v$

- Tikhonov-regularized in-likelihood unfolding (and Iterative Bayesian unfolding as a cross check) is used to obtain the differential distributions.
- The results are consistent with Standard Model expectations, derived using different Monte Carlo generators.

JG U

- The cross sections are measured in a fiducial phase space.
 - Major processes extracted in data → minimisation of the background modelling uncertainties.
 - Multiple BDTs defined and trained to discriminate between signal and background processes, and BDT scores are used as templates in the fit to data.
 - Major backgrounds estimated in a simultaneous fit of the SR and CRs.

• Integrated fiducial cross section:
$$\sigma^{\rm fid} = 1.68 \pm 0.40~{\rm fb} = 1.68 \pm 0.33~{\rm (stat)} \pm 0.23~{\rm (syst)}~{\rm fb}$$

- Differential measurements as a function of 13 variables which probe different properties of the Higgs boson:
 - Higgs boson spin, charge, parity QCD effects EW corrections BSM contributions
- Fit & matrix-inversion Unfolding to particle-level performed in a single step of the Likelihood minimisation.
- The uncertainties in the differential cross-section measurements are driven by the data statistical uncertainty.

$$p_{\mathrm{T}}^{\mathrm{H}}$$
 $p_{\mathrm{T}}^{\ell\ell}$ $p_{\mathrm{T}}^{\ell_1}$ $p_{\mathrm{T}}^{\ell_2}$ $m_{\ell\ell}$ $|\Delta y_{\ell\ell}|$ $|\Delta\phi_{\ell\ell}|$ $\cos(heta_{\eta}^*)$ $p_{\mathrm{T}}^{\mathrm{j}_1}$ $p_{\mathrm{T}}^{\mathrm{j}_2}$ m_{jj} $|\Delta y_{\mathrm{jj}}|$ $\Delta\phi_{\mathrm{jj}}$

HIGG-2020-25

- Differential cross-sections are used to constrain anomalous interactions described by a dimension-six Effective Field Theory.
- Observed and expected values of SMEFT Wilson coefficients from CP-even and CP-odd operators.

New Results!

In 2022 the LHC has increased the centre-of-mass energy of the proton-proton (pp) collisions to the new world-record value of 13.6 TeV.

 $\sigma_{\rho \rho \to H} \, [
m bb]$

- About 31.4 fb⁻¹ of pp collision data recorded with the ATLAS detector.
- First ATLAS measurement of the $H \rightarrow \gamma \gamma$ cross-section at this new energy.
- In order to reduce the model dependence, the measurement is restricted to a particle-level phase space matching closely the reconstruction-level photon kinematic selection, and it is corrected for detector effects:

$$\sigma_{\text{fid}}(pp \to H \to \gamma \gamma) = 76^{+14}_{-13} \text{ fb}$$

$$\sigma_{\rm fid}(pp \to H \to \gamma \gamma) = 76^{+14}_{-13} \; {\rm fb}$$
 SM $\sigma_{\rm fid}(pp \to H \to \gamma \gamma) = 67.5 \pm 3.4 \; {\rm fb}$

Fiducial measurement is extrapolated to the full phase space:

$$\sigma(pp \to H) = 67^{+13}_{-12} \text{ pb}$$

$$sm \sigma(pp \rightarrow H) = 59.8 \pm 2.6 \text{ pb.}$$

These results do not show any significant deviation from the SM predictions.

ATLAS-CONF-2023-003

