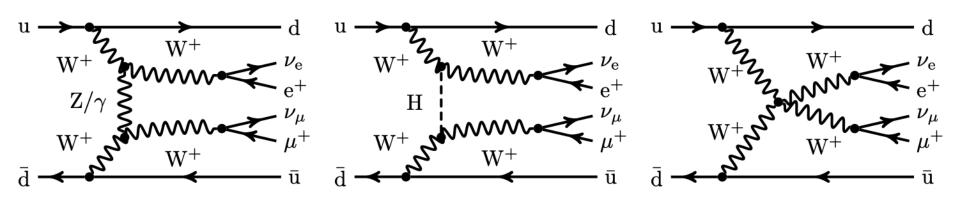
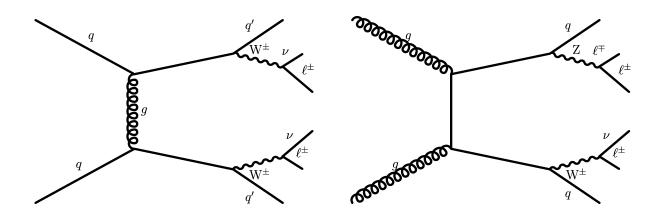
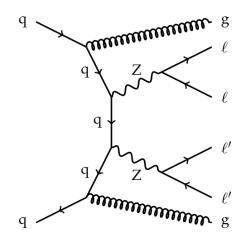

Vector Boson Scattering results in CMS



on behalf of the CMS Collaboration


Vector Boson Scattering


- Three contributions at LO:
 - 1. Pure EWK $O(\alpha_{EW}^6) \rightarrow signal$
 - 2. QCD-induced $O(\alpha_{EW}^4 \alpha_S^2)$ irreducible contribution
 - 3. EWK-QCD interference $O(\alpha_{EW}^5\alpha_S)$

Vector Boson Scattering

- Three contributions at LO:
 - 1. Pure EWK $O(\alpha_{EW}^6) \rightarrow signal$
 - QCD-induced $O(\alpha_{EW}^4 \alpha_S^2)$ irreducible contribution
 - **EWK-QCD** interference $O(\alpha_{EW}^5\alpha_S)$

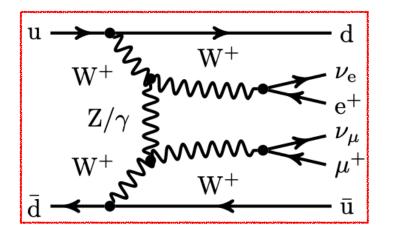
VBS signal

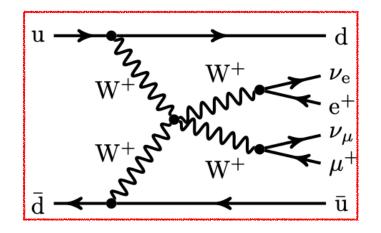
VBS jets: Two very energetic forward-backward QUARK-initiated jets
 ▶ Large m_{ii} and Δη_{ii}

3 signatures depending on the decay of the vector bosons:

Fully leptonic: Pure but low BR

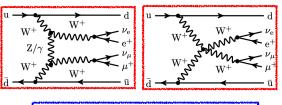
Semi-leptonic: Balance purity & BR

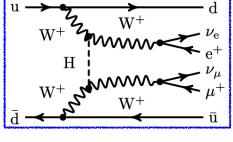

Fully hadronic: High BR & access to high energy tails but high bkg, Run2 results are yet to come!


Main backgrounds: ttbar/top, DY, non-prompt leptons, diboson

Why is VBS interesting?

- Probes two key aspects of the SM together
 - Gauge interactions: triple and quartic gauge couplings

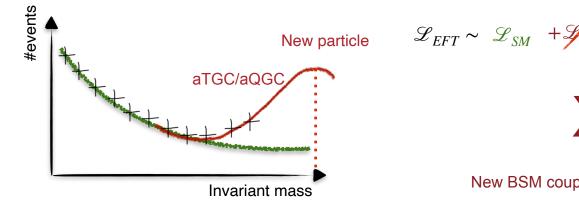


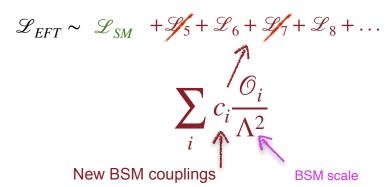


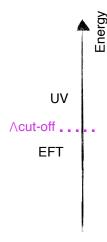
why is VBS interesting?

- Probes two key aspects of the SM together
 - Gauge interactions: triple and quartic gauge couplings
 - Couplings between the Higgs and the gauge bosons
 - complementary to direct measurements

cancels exactly the E² dependence of the cross section at high energy


Why is VBS interesting?


Sensitive to BSM physics


In a model-independent approach

$$iM_{Higgs} \simeq i \frac{g^2}{4m_W^2} [s+t]$$
 (δ) Deviations are hints to new physics and to its scale

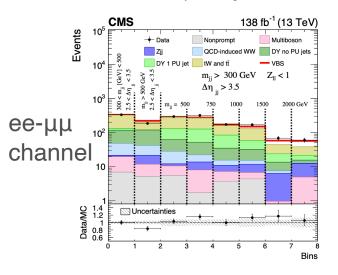
- Beyond the LHC direct reach
 - parametrize deviations from the SM in terms of an Effective Field Theory (EFT)

VBS results:

First evidence and observations for rare processes

	PROCESS	LUMI [fb-1]	RESULTS	REFERENCE
Fully	VBS in ssWW + WZ	Full Run 2 (137/fb)	Observation & XS + dim-8 EFT limits	PLB 809 (2020) 135710
leptonic	polarized VBS ssWW	Full Run 2 (137/fb)	W _L W _L measurement	PLB 812 (2020) 136018
icptoffic	VBS ZZ	Full Run 2 (137/fb)	Evidence + dim-8	PLB 812 (2021) 135992
	VBS osWW	Full Run 2 (137/fb)	Observation & XS	<u>arXiv:2205.05711</u> , sub. PLB
Semi-	VBS WV	Full Run 2 (137/fb)	Evidence	PLB 834 (2022) 137438
leptonic (VBS WV/ZV	2016 data (36/fb)	Dim-8 EFT limits	PLB 798 (2019)134985
0	VBS Wy	Full Run 2 (137/fb)	Observation, differential XS + dim-8 EFT limits	PLB 811 (2020) 135988 arXiv:2212.12592, acc. PRD
	VBS Z _Y	Full Run 2 (137/fb)	Observation	PRD 104 (2021) 072001
0	VBS PPS yyVV	Full Run 2 PPS (100/fb)	Dim-6 and dim-8	arXiv:2211.16320, sub. JHEP
See Monika				

Stringent limits on EFT coefficients

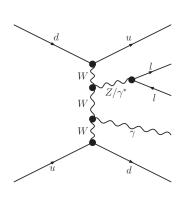

Mittal talk

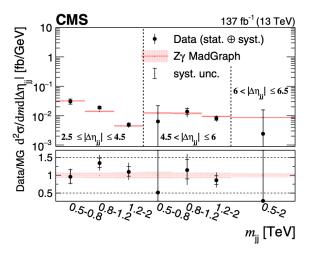
Highlights on "Firsts":

▶ VBS osWW [<u>arXiv:2205.05711</u>]

- ▶ Obs. (exp.) significance 5.6 (5.2)
- ▶ Fiducial cross-sections:

 10.2 ± 2.0 fb (theory: 9.1 ± 0.6 pb)



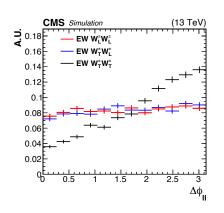

$$Z_{\ell\ell} = \frac{1}{2}|Z_{\ell_1} + Z_{\ell_2}|, \quad \text{where } Z_{\ell_i} = \eta_{\ell_i} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$$

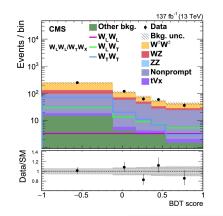
Observations!

▶ VBS Zγ [PRD 104 (2021) 072001]

- ▶ Obs. (exp.) significance 9.4 (8.5)
- ▶ Fiducial EW cross-sections: 5.21 ± 0.52 (stat) ± 0.56 (syst) fb
- Provide several unfolded differential xsecs

Highlights on "Firsts":

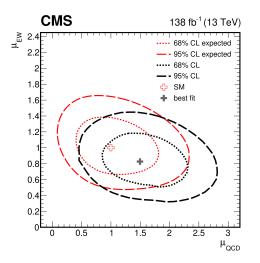

▶ VBS fully leptonic


- Differential ssWW xsec measurement
 - + observation of VBS WZ

Obs. (exp.) significance 6.8(5.3)

[PLB 809 (2020) 135710]

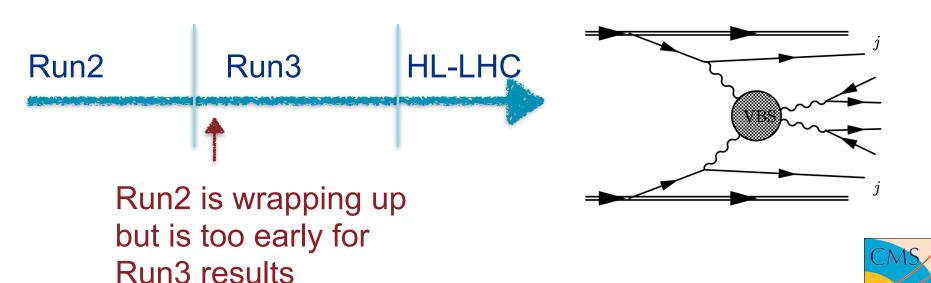
- ▶ Polarization in ssWW [PLB 812 (2020) 136018]
 - b obs. (exp.) xsec for W_L±W_L±: 1.17 (0.88) fb (in WW RF)
 - ▶ obs. (exp.) significance for W_L±W_X±: 2.3 (3.1)



▶ VBS WV semileptonic

[PLB 834 (2022) 137438]

- Evidence obs. (exp.) significance 4.4 (5.1)
- EW_{WV} xsec obs. (exp.) $1.90^{+0.53}_{-0.46}$ pb (2.23)
- $\mu_{EW}=0.85\pm0.12(stat) ^{+0.19}_{-0.17}(syst)$

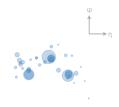

Wy & ZZ: best limits on several dim-8 operators

Irene Zoi (<u>irene.zoi@cern.ch</u>) I Vecti PPS γγ→WW/ZZ: also dim-6

Vector Boson Scattering results* in CMS

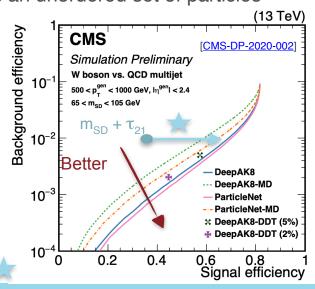
Jet tagging

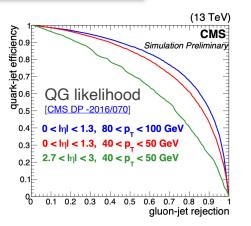
ML taggers are improving the identification performance

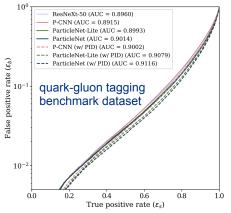

B-tagging to reduce ttbar background

- ▶ (Boosted) W/Z tagging)
- ▶ q/g discrimination

Could be applied to other tasks

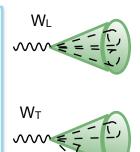

One example: ParticleNet [PRD 101 (2020) 056019]

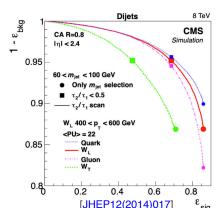

Graph NN with jets as an unordered set of particles



- Particle cloud
 - particles are intrinsically unordered
 - primary information:
 - = 2D coordinates in the η - ϕ space
 - Plus all other particle properties as momentum, charge, etc.

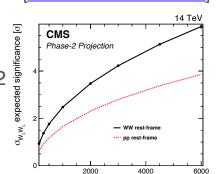
50% more signal!

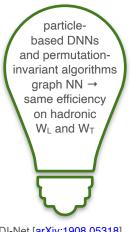




Polarization

- Challenging measurement: V_LV_L->V_LV_L is ~10% of the total EW WW scattering cross section
 - Still! Significance of ~1 (3) standard deviations for WLWL (WLWX) in Run2 [PLB 812 (2020) 136018]
 - Extrapolating it the prediction at HL-LHC are improved wrt previous estimates
 - use of more sophisticated techniques to discriminate between signal and backgrounds
- Can we improve the sensitivity? Can we use other channels?


(Boosted) hadronic channel has info on all final state objects! → but improvements are needed



[arXiv:2110.02773v2]

[CMS-PAS-FTR-21-001]

Luminosity [fb-1]

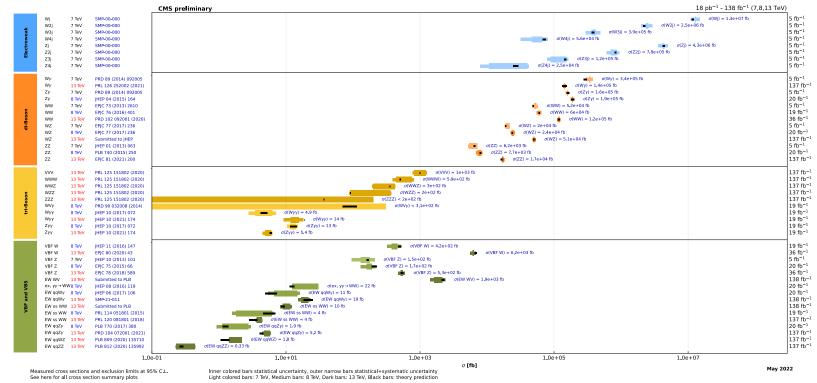
CMS Experiment at the LHC, CERN

Data recorded: 2016-Jul-08 23:47:39.259242 GMT

Run / Event / LS: 276525 / 2665335317 / 1561

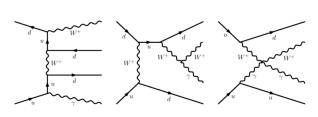
- Run2 is wrapping up:
 - Observed VBS os/ss WW
 - First polarization
 - Some channels are still uncovered
- New opportunities to get the most of Run3 & HL-LHC

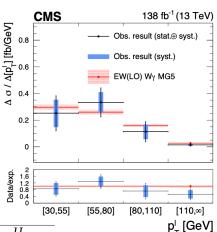
More to come!!


VBS jet

Real VBS event

Additional material

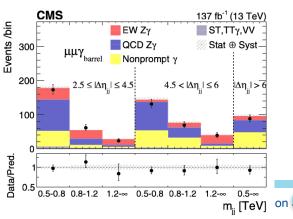

Overview of CMS cross section results



VBS Wγ

- Final states: $e\nu\gamma$ + 2jets and $\mu\nu\gamma$ + 2jets
- Data-driven method for background estimate:
 - Template fit: non-prompt photon
 - Tight-loose method: non-prompt lepton
- Probs quadratic and triple gauge couplings
- Fiducial and differential cross section
- Limits setting on EFT dim-8 operators
- Signal extraction with simultaneous 2D $(m_{jj}-m_{l\gamma})$ fit in signal region and 1D (m_{jj}) in control region

			[00,0
	Expected limit	Observed limit	$U_{\rm bound}$
	$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
	$-7.1 < f_{M.1}/\Lambda^4 < 7.4$	$-7.8 < f_{M.1}/\Lambda^4 < 8.1$	2.1
	$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
1	$-2.5 < f_{M,3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
۱	$-3.3 < f_{M.4}/\Lambda^4 < 3.3$	$-3.7 < f_{M.4}/\Lambda^4 < 3.6$	2.3
١	$-3.4 < f_{M,5}/\Lambda^4 < 3.6$	$-3.9 < f_{M,5}/\Lambda^4 < 3.9$	2.7
	$-13 < f_{M,7}/\Lambda^{*} < 13$	$-14 < f_{M7}/\Lambda^{\star} < 14$	2.2
	$-0.43 < f_{T,0}/\Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
	$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
	$-0.72 < f_{T2}/\Lambda^4 < 0.92$	$-0.85 < f_{T2}/\Lambda^4 < 1.0$	2.3
	$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T.5}/\Lambda^4 < 0.33$	2.6
1	$-0.23 < f_{T.6}/\Lambda^4 < 0.25$	$-0.25 < f_{T.6}/\Lambda^4 < 0.27$	2.9
١	$-0.60 < f_{T,7}/\Lambda^4 < 0.68$	$-0.67 < f_{T,7}/\Lambda^4 < 0.73$	3.1


Best

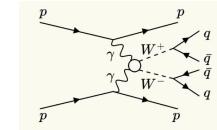
PRD 104 (2021) 072001

VBS Zγ

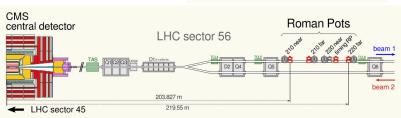
- ℓ + ℓ - γ jj final states (ℓ = e or μ)
- Main background QCD-induced Zγjj, from simulation, constrained in data
- Z+jets with selected photon is not prompt, data-driven
- Cross section in the fiducial volume
 - EW Zγjj: 5.21±0.52(stat)±0.56(syst) fb
 - EW and QCD-induced Zγjj: 14.7±0.80(stat)±1.26(syst) fb

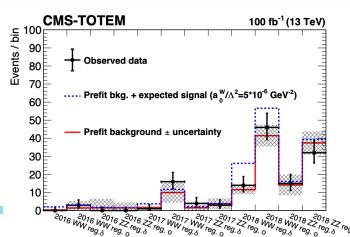
Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$\overline{F_{\mathrm{M0}}/\Lambda^{4}}$	-12.5	12.8	-15.8	16.0	1.3
$F_{\rm M1}/\Lambda^4$	-28.1	27.0	-35.0	34.7	1.5
$F_{\rm M2}/\Lambda^4$	-5.21	5.12	-6.55	6.49	1.5
$F_{\rm M3}/\Lambda^4$	-10.2	10.3	-13.0	13.0	1.8
$F_{\rm M4}/\Lambda^4$	-10.2	10.2	-13.0	12.7	1.7
$F_{\rm M5}/\Lambda^4$	-17.6	16.8	-22.2	21.3	1.7
$F_{\rm M7}/\Lambda^4$	-44.7	45.0	-56.6	55.9	1.6
$F_{\rm T0}/\Lambda^4$	-0.52	0.44	-0.64	0.57	1.9
$F_{\rm T1}/\Lambda^4$	-0.65	0.63	-0.81	0.90	2.0
$F_{\rm T2}/\Lambda^4$	-1.36	1.21	-1.68	1.54	1.9
$F_{\mathrm{T5}}/\Lambda^4$	-0.45	0.52	-0.58	0.64	2.2
$F_{\rm T6}/\Lambda^4$	-1.02	1.07	-1.30	1.33	2.0
$F_{\rm T7}/\Lambda^4$	-1.67	1.97	-2.15	2.43	2.2
$F_{\mathrm{T8}}/\Lambda^4$	-0.36	0.36	-0.47	0.47	1.8
$F_{\rm T9}/\Lambda^4$	-0.72	0.72	-0.91	0.91	1.9

EW signal region Common selection, $m_{\rm jj} > 500$ GeV, $|\Delta\eta_{\rm jj}| > 2.5,~\eta^* < 2.4,~\Delta\phi_{Z\gamma,\rm jj} > 1.9$


aQGC search region Common selection, $m_{\rm jj} > 500$ GeV, $|\Delta \eta_{\rm jj}| > 2.5,~p_{\rm T}^{\gamma} > 120$ GeV

Best


VBS PPS yyWW/ZZ


CMS + TOTEM

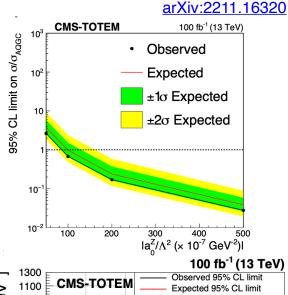
- ξ: fractional momentum loss of forward proton > 0.05
- Standard VV selection and mj1+ mj2 to distinguish WW from *77*
- Proton-jet matching requirements
- Data-driven bkg estimation in 3 SBs
 - 2 jets (QCD, V+jets, ttbar)
 - Protons from pileup/diffractive collisions or fake proton tracks from showers/beam bckg
- Main uncertainties: jet energy scale, proton ξ measurement, proton reconstruction efficiency, and integrated luminosity
- ML fit in 12 bins: 3 years, WW vs ZZ SR and 2 or 1 signal protons

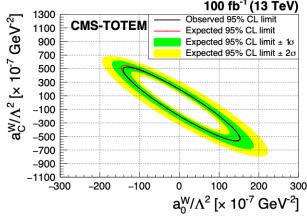
Precision Proton Spectrometer (PPS)

VBS PPS yyWW/ZZ

CMS + TOTEM

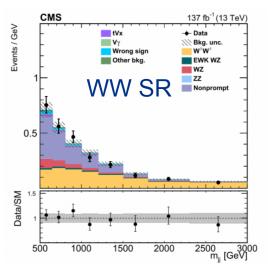
- aQGC limits w/o "clipping" for unitarity
 - remove simulated signal above unitarity violation threshold

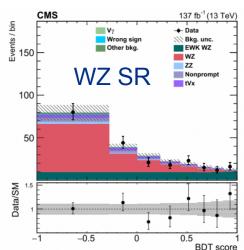

Coupling	Observed (expected) 95% CL upper limit No clipping	Observed (expected) 95% CL upper limit Clipping at 1.4 TeV
$ a_0^{\mathrm{W}}/\Lambda^2 $	$4.3 (3.9) \times 10^{-6} \text{GeV}^{-2}$	$5.2 (5.1) \times 10^{-6} \text{GeV}^{-2}$
$ a_C^{\rm W}/\Lambda^2 $	$1.6~(1.4) \times 10^{-5}\text{GeV}^{-2}$	$2.0 (2.0) \times 10^{-5} \text{GeV}^{-2}$
$ a_0^{\mathbb{Z}}/\Lambda^2 $	$0.9~(1.0) \times 10^{-5}\mathrm{GeV^{-2}}$	_
$ a_C^{Z}/\Lambda^2 $	$4.0 (4.5) \times 10^{-5} \text{GeV}^{-2}$	_

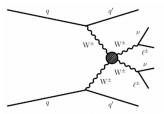

First limits on anomalous coupling in γγ→ZZ

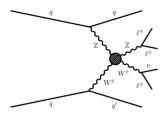
Dim-8

Coupling	Observed (expected) 95% CL upper limit No clipping	Observed (expected) 95% CL upper limit Clipping at 1.4 TeV
$ f_{M,0}/\Lambda^4 $	66.0 (60.0) TeV ⁻⁴	79.8 (78.2) TeV ⁻⁴
$ f_{M,1}/\Lambda^4 $	$245.5 (214.8) \text{TeV}^{-4}$	$306.8 (306.8) \text{TeV}^{-4}$
$ f_{M,2}/\Lambda^4 $	$9.8 (9.0) \text{TeV}^{-4}$	$11.9~(11.8)~{ m TeV^{-4}}$
$ f_{M,3}/\Lambda^4 $	$73.0~(64.6)~\text{TeV}^{-4}$	$91.3~(92.3)~{\rm TeV^{-4}}$
$ f_{M,4}/\Lambda^4 $	$36.0~(32.9)~\text{TeV}^{-4}$	$43.5 (42.9) \text{TeV}^{-4}$
$ f_{M,5}/\Lambda^4 $	$67.0~(58.9)~\text{TeV}^{-4}$	$83.7~(84.1)~{\rm TeV^{-4}}$
$ f_{M,7}/\Lambda^4 $	$490.9 (429.6) \text{TeV}^{-4}$	$613.7~(613.7)\mathrm{TeV^{-4}}$


季Fermilab

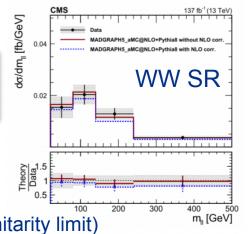

VBS ssWW & VBS WZ

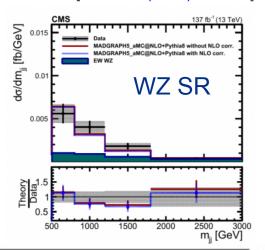

Fully leptonic


- $z_{\ell}^* = \left| \eta^{\ell} \frac{\eta^{\mathsf{j}_1} + \eta^{\mathsf{j}_2}}{2} \right| / |\Delta \eta_{\mathsf{j}\mathsf{j}}|$
- [PLB 809 (2020) 135710]

- Background estimation with CR in data & simulation
 - Simultaneous fit of WZ and W±W± SR
 - data-to-simulation efficiency correction for charge-misidentified electron

Variable	$W^{\pm}W^{\pm}$	WZ
Leptons	2 leptons, $p_T > 25/20 \text{GeV}$	3 leptons, $p_T > 25/10/20 \text{GeV}$
$p_{\mathrm{T}}^{\mathrm{j}}$	>50 GeV	>50 GeV
$ m_{\ell\ell}-m_{\rm Z} $	>15 GeV (ee)	<15 GeV
$m_{\ell\ell}$	>20 GeV	-
$m_{\ell\ell\ell}$	_	>100 GeV
$p_{\mathrm{T}}^{\mathrm{miss}}$	>30 GeV	>30 GeV
b quark veto	Required	Required
$\max(z_{\ell}^*)$	< 0.75	<1.0
m_{ii}	>500 GeV	>500 GeV
$ \Delta \eta_{jj} $	>2.5	>2.5


Table 3List and description of all the input variables used in the BDT analysis for the WZ SR.


Variable	Definition
m_{ii}	Mass of the leading and trailing jets system
$ \Delta n_{ii} $	Absolute difference in rapidity of the leading and trailing jets
$\Delta \phi_{\rm ij}$	Absolute difference in azimuthal angles of the leading and trailing jets
$\Delta \phi_{\rm jj}$ $p_{\rm T}^{\rm j1}$ $p_{\rm T}^{\rm j2}$ $\eta^{\rm j1}$ $ \eta^{\rm W} - \eta^{\rm Z} $	p_{T} of the leading jet
$p_{\mathrm{T}}^{\mathrm{j2}}$	p_{T} of the trailing jet
η^{j1}	Pseudorapidity of the leading jet
$ \eta^{W} - \eta^{Z} $	Absolute difference between the rapidities of the Z boson and the
	charged lepton from the decay of the W boson
$z_{\ell_i}^* (i = 1 - 3)$	Zeppenfeld variable of the three selected leptons
$z_{\ell_i}^* (i = 1 - 3) \\ z_{3\ell}^*$	Zeppenfeld variable of the vector sum of the three leptons
$\Delta R_{j1,Z}$	ΔR between the leading jet and the Z boson
$\Delta R_{j1,Z}$ $ \vec{p_T}^{\text{tot}} /\sum_i p_i^i$	Transverse component of the vector sum of the bosons and tagging jets momenta, normalized to their scalar p_T sum

VBS ssWW & VBS WZ

Fully leptonic

- EW WZ obs. (exp.) significance 6.8 (5.3)
- **EW W±W± signal >> 5 standard deviations**

Dim-8 limits (cutting the EFT expansion at the unitarity limit)

	Observed (W [±] W [±]) (TeV ⁻⁴)	Expected $(W^{\pm}W^{\pm})$ (TeV^{-4})	Observed (WZ) (TeV ⁻⁴)	Expected (WZ) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
f_{T0}/Λ^4	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{\rm T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
f_{T2}/Λ^4	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\rm M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm SO}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91, 97]

Polarized VBS ssWW

Fully leptonic

- Electron charge misidentification in simulation is corrected to reproduce the rate measured in data, using Z→ee events: mis. rate is about 0.01% (0.3%) in the barrel (endcap) region. Contri [50]. Contribution in OS dilepton final states from t⁻t, tW, W+W−, and Drell−Yan
- CRs to estimate the normalization of the main backgrounds from data: WZ, nonprompt lepton, tZq, and ZZ
- 2 fits are performed for the cross-sections on 2D variable (inclusive + signal BDTs)
 - WL± WL± and WX±WT±
 - WL± WX± and WT±WT±

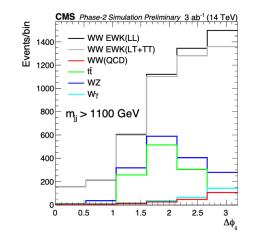
Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	$^{3.13~\pm~0.35}$ WW RF
$W^\pm_LW^\pm_X$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11^{+0.49}_{-0.47}$	1.94 ± 0.21
$W_I^{\pm}W_I^{\pm}$	$0.24^{+0.40}_{-0.37}$	0.28 ± 0.03
$W_X^{\pm}W_T^{\pm}$	$3.25^{+0.50}_{-0.48}$	3.32 ± 0.37 Partons
$W^{\pm}_{L}W^{\pm}_{X}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19 RF
$W_T^{\pm}W_T^{\pm}$	$2.03^{+0.51}_{-0.50}$	1.89 ± 0.21

obs. (exp.) significance WL±WX± 2.3 (3.1)

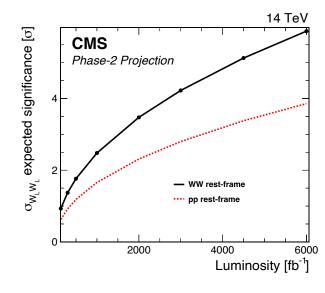
obs. (exp.) significance WL±WX± 2.6 (2.9)

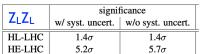
Variables	Definitions		
$\Delta\phi_{ m jj}$	Difference in azimuthal angle between the leading and subleading jets		
$p_{\mathrm{T}}^{\mathrm{j}1}$	p_{T} of the leading jet		
$p_{\mathrm{T}}^{\mathrm{j}1}$ $p_{\mathrm{T}}^{\mathrm{j}2}$	p_{T} of the subleading jet		
$p_{\mathrm{T}}^{\ell_1} \\ p_{\mathrm{T}}^{\ell_2}$	Leading lepton p_{T}		
$p_{\mathrm{T}}^{\ell_2}$	Subleading lepton p_T		
$\Delta\phi_{\ell\ell}$	Difference in azimuthal angle between the two leptons		
$m_{\ell\ell}$	Dilepton mass		
$p_{\mathrm{T}}^{\ell\ell}$	Dilepton p_{T}		
$m_{\mathrm{T}}^{\mathrm{WW}}$	Transverse WW diboson mass		
Z_{ℓ}^*	Zeppenfeld variable of the leading lepton		
$z_{\ell_1}^*$ $z_{\ell_2}^*$	Zeppenfeld variable of the subleading lepton		
$\Delta R_{j1,\ell\ell}$	ΔR between the leading jet and the dilepton system		
$\Delta R_{j2,\ell\ell}$	ΔR between the subleading jet and the dilepton system		
$(p_{\rm T}^{\ell_1} p_{\rm T}^{\ell_2})/(p_{\rm T}^{\rm j1} p_{\rm T}^{\rm j2})$	Ratio of p_T products between leptons and jets		
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum		
rce of uncertainty	$W_L^{\pm}W_L^{\pm}$ (%) $W_X^{\pm}W_T^{\pm}$ (%) $W_L^{\pm}W_X^{\pm}$ (%) $W_T^{\pm}W_T^{\pm}$ (%)		

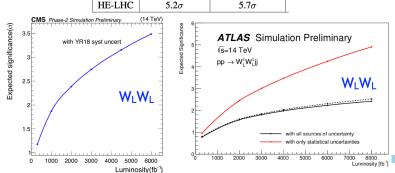
PI				
Source of uncertainty	$W_L^{\pm}W_L^{\pm}$ (%)	$W_X^{\pm}W_T^{\pm}$ (%)	$W^{\pm}_{L}W^{\pm}_{X}$ (%)	$W_T^{\pm}W_T^{\pm}$ (%)
Integrated luminosity	3.2	1.8	1.9	1.8
Lepton measurement	3.6	1.9	2.5	1.8
Jet energy scale and resolution	11	2.9	2.5	1.1
Pileup	0.9	0.1	1.0	0.3
b tagging	1.1	1.2	1.4	1.1
Nonprompt lepton rate	17	2.7	9.3	1.6
Trigger	1.9	1.1	1.6	0.9
Limited sample size	38	3.9	14	5.7
Theory	6.8	2.3	4.0	2.3
Total systematic uncertainty	44	6.6	18	7.0
Statistical uncertainty	123	15	42	22
Total uncertainty	130	16	46	23

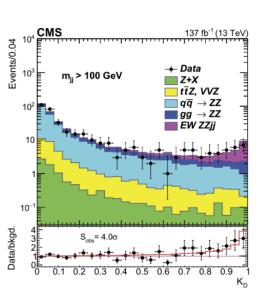

Polarization

Fully leptonic


[CMS-PAS-FTR-21-001]


Simultaneous fit of Dphi jj variable in two mjj regions


[CERN-LPCC-2018-03]



VBS ZZ Fully leptonic

- Main bckg: production of 2Z bosons + QCD-induced jets, estimated from simulation but further constrained in data
- Other irreducible bckgs: processes with high-pT isolated leptons ttZ+jets and VVZ+jets, from simulation
- Reducible bckgs: heavy-flavor jets produce secondary leptons or jets misidentified as leptons as Z+jets, tt+jets and WZ+jets
- Main unc: QCD renormalization and factorization scales (signal) and jet energy scale ~10%
- signal strength for the EW production,
- $\mu = \sigma / \sigma SM$, extracted with matrix element discriminant (KD)

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{ m T0}/\Lambda^4$	-0.37	0.35	-0.24~(-0.26)	0.22 (0.24)	2.4
$f_{\rm T1}/\Lambda^4$	-0.49	0.49	-0.31 (-0.34)	0.31 (0.34)	2.6
$f_{\rm T2}/\Lambda^4$	-0.98	0.95	-0.63~(-0.69)	0.59 (0.65)	2.5
$f_{ m T8}/\Lambda^4$	-0.68	0.68	-0.43 (-0.47)	0.43 (0.48)	1.8
$f_{\mathrm{T9}}/\Lambda^4$	-1.5	1.5	-0.92 (-1.02)	0.92 (1.02)	1.8
			-0.92 (-1.02) Bes	Si 🗆	

VBS osWW Fully leptonic

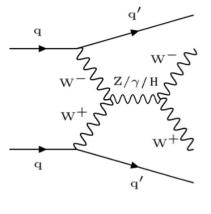
- VBS SR in 3 channels ee, μμ, eμ
- DY & ttbar CR
- Dedicated DNN for the eu channel
- Signal strength from fit in SR+CR

Inclusive cross section $99 \pm 20 \text{ fb } (89 \pm 5 \text{ fb theory})$

Fiducial cross section 10.2 ± 2.0 fb (9.1 ± 0.6 fb theory)

	10	
-CR	Data/WC 1.5.1 0.5	Uncertainties
Requirements $\begin{array}{l} \text{e}\mu,\text{ee},\mu\mu(\text{not from }\tau\text{ o}\\ p_{T}^{\text{dressed }\ell}=p_{T}^{\ell}+\sum_{i}p_{T}^{\gamma_{i}}\\ p_{T}^{\ell_{i}}>25\text{GeV},p_{T}^{\ell_{2}}>130\\ \eta <2.5\\ p_{T}^{\ell_{\ell}}>30\text{GeV},m_{\ell\ell}>50 \end{array}$	if $\Delta R(\ell, \gamma)$ GeV, $p_{\mathrm{T}}^{\ell_3}$	$(r_i) < 0.1$
$p_{\mathrm{T}}^{j} > 30 \mathrm{GeV}$ $\Delta R(j,\ell) > 0.4$ At least 2 jets, no b jets n < 4.7		

CMS


Multiboson

Events

10°

10³ 10²

[arXiv:2205.05711]

	eμ DNN
Variable	Description
$m_{ m jj}$	Invariant mass of the two tagging jets pair
$\Delta\eta_{ m jj}$	Pseudorapidity separation between the two tagging jets
$p_{ m T}^{ m j_1}$	p_{T} of the highest p_{T} jet
$p_{ m T}^{ m j_2}$	p_{T} of the second-highest p_{T} jet
$p_{\mathrm{T}}^{\ell\ell}$	$p_{\rm T}$ of the lepton pair
$\Delta\phi_{\ell\ell}$	Azimuthal angle between the two leptons
Z_{ℓ_1}	Zeppenfeld variable of the highest p_T lepton
Z_{ℓ_2}	Zeppenfeld variable of the second-highest p_T lepton
$Z_{\ell_2} \ m_{ m T}^{\ell_1}$	Transverse mass of the $(p_{\mathrm{T}}^{\ell_1}, p_{\mathrm{T}}^{\mathrm{miss}})$ system

138 fb⁻¹ (13 TeV)

 $Z_{11} < 1$

DNN output

Nonprompt

0.6

QCD-induced WW

Higgs

DY

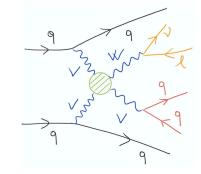
VBS

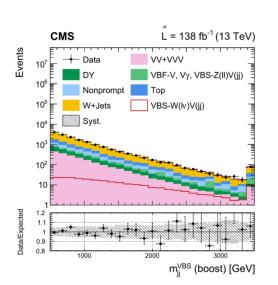
Fiducial volume: Requirements at Gen level

 $m_{ii} > 300 \,\text{GeV}, \, \Delta \eta_{ii} > 2.5$

 $p_{\rm T}^{\rm miss} > 20 \, {\rm GeV}$

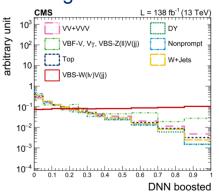
Objects


Leptons

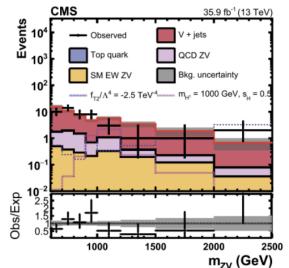

Iets

VBS WV (SM) semi-leptonic

- Large BR but large irreducible backgrounds
- No public predictions beyond LO accuracy for semileptonic signatures
- Advances in signal modeling of partonshower effects (Dipole recoil scheme used for the first time) [arXiv:1710.00391]
- Data-driven bkg estimation for Top and W+jets backgrounds:
 - Top: one free floating parameter per category in the ML fit
 - Wjets: several free floating parameters per category in the ML fit, to perfect the modeling of VBS-jets momenta.
- Main uncertainties: statistical, theoretical and b-tagging



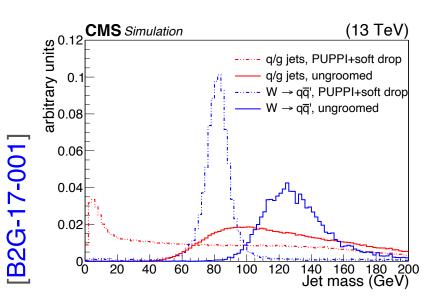
PLB 834 (2022) 137438

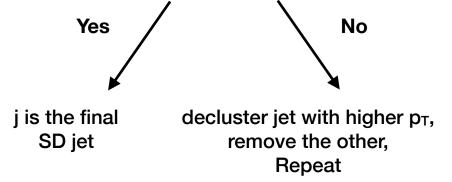

Boosted & resolved categories

Variable	Resolved	Boosted	SHAP ranking	
variable	Resolveu	boosteu	Resolved	Boosted
Lepton pseudorapidity	✓	✓	13	12
Lepton transverse momentum	✓	✓	16	10
Zeppenfeld variable for the lepton	✓	✓	2	2
Number of jets with $p_T > 30 \text{GeV}$	✓	✓	7	3
Leading VBS tag jet p_T	-	✓	-	11
Frailing VBS tag jet p_T	✓	✓	7	6
Pseudorapidity interval $\Delta \eta_{ii}^{VBS}$ between tag jets	✓	✓	4	4
Quark/gluon discriminator of leading VBS tag jet	✓	✓	9	7
Azimuthal angle distance between VBS tag jets	✓	-	10	-
Invariant mass of the VBS tag jets pair	✓	✓	1	1
p _T of the leading V _{had} jet	✓	-	14	-
PT of the trailing Vhad jet	✓	-	12	-
Pseudorapidity difference between V _{had} jets	✓	-	8	-
Quark/gluon discriminator of the leading Vhad jet	✓	-	3	-
Quark/gluon discriminator of the trailing Vhad jet	✓	-	5	-
p _T of the AK8 V _{had} jet candidate	-	✓	-	8
Invariant mass of V _{had}	✓	✓	11	5
Zeppenfeld variable for V _{had}	-	✓	-	9
Centrality	-	✓	15	13

VBS WV/ZV (dim-8)

- semi-leptonic
- Includes also a search for charged Higgs bosons
- Main bckg V+jets from data is SB region
 - Fit of the mwv & mzv & obtain transfer factor
- Unitarity constraints not included
- First aQGC search in this channel

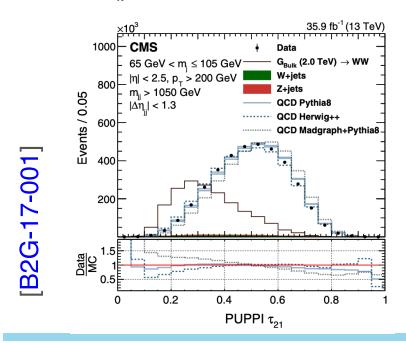

	Observed (WV) (TeV ⁻⁴)	Expected (WV) (TeV ⁻⁴)	Observed (ZV) (TeV ⁻⁴)	Expected (ZV) (TeV ⁻⁴)	Observed (TeV ⁻⁴)	Expected (TeV ⁻⁴)
$f_{\rm SO}/\Lambda^4$	[-2.7, 2.7]	[-4.2, 4.2]	[-40, 40]	[-31, 31]	[-2.7, 2.7]	[-4.2, 4.2]
$f_{\rm S1}/\Lambda^4$	[-3.3, 3.4]	[-5.2, 5.2]	[-32, 32]	[-24, 24]	[-3.4, 3.4]	[-5.2, 5.2]
$f_{\rm M0}/\Lambda^4$	[-0.69, 0.69]	[-1.0, 1.0]	[-7.5, 7.5]	[-5.3, 5.3]	[-0.69, 0.70]	[-1.0, 1.0]
$f_{\rm M1}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.0]	[-22, 23]	[-16, 16]	[-2.0, 2.1]	[-3.0, 3.0]
$f_{\rm M6}/\Lambda^4$	[-1.4, 1.4]	[-2.0, 2.0]	[-15, 15]	[-11, 11]	[-1.3, 1.3]	[-1.4, 1.4]
$f_{\rm M7}/\Lambda^4$	[-3.4, 3.4]	[-5.1, 5.1]	[-35, 36]	[-25, 26]	[-3.4, 3.4]	[-5.1, 5.1]
$f_{\rm TO}/\Lambda^4$	[-0.12, 0.11]	[-0.17, 0.16]	[-1.4, 1.4]	[-1.0, 1.0]	[-0.12, 0.11]	[-0.17, 0.16]
$f_{\rm T1}/\Lambda^4$	[-0.12, 0.13]	[-0.18, 0.18]	[-1.5, 1.5]	[-1.0, 1.0]	[-0.12, 0.13]	[-0.18, 0.18]
f_{T2}/Λ^4	[-0.28, 0.28]	[-0.41, 0.41]	[-3.4, 3.4]	[-2.4, 2.4]	[-0.28, 0.28]	[-0.41, 0.41]


Softdrop

 Soft drop: reduce the jet contamination from initial state radiation, underlying event and pileup

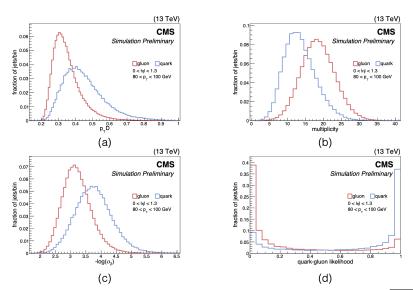
Soft drop condition:
$$\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

- 1. Jet j clustered with CA
- 2. Decluster last step and obtain j1 and j2
- 3. Check if soft drop condition is satisfied



N-subjettiness τ_N tells how likely a jet has N subjets

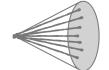
$$\tau_N = \frac{1}{d_0} \sum_{k} p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k}\} \qquad d_0 = \sum_{k} p_{T,k} R$$

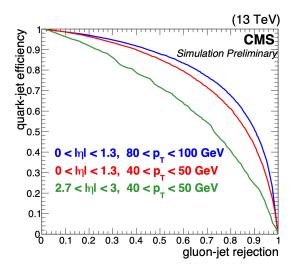

$$d_0 = \sum_k p_{T,k} R$$

N = identified subjets k = jet constituents

- $\tau_{\rm N} \sim 0$: N subjets likely
- $\tau_N >> 0$: more than N subjets likely

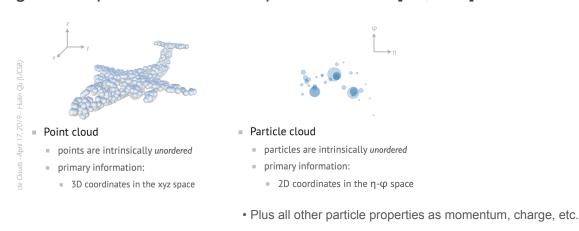
QG likelihood [CMS DP -2016/070]

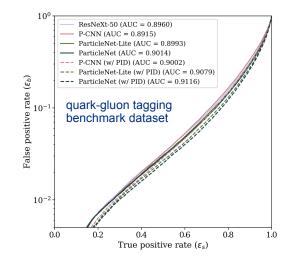


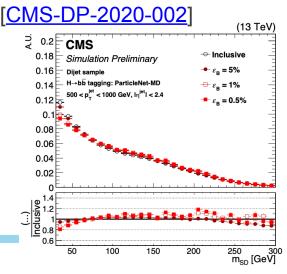

Quark-gluon discrimination variables from simulation: (a) $p_T D = \frac{\sqrt{\sum_i p_{T,i}^2}}{\sum_i p_{T,i}}$ (b) multiplicity (c) $-log(\sigma_2)$, where σ_2 is the ellipse minor axis (d) the Quark-Gluon Likelihood.

Main differences are:

- the particle multiplicity is higher in gluon jets than in lightquark jets;
- the **fragmentation function** of gluon jets is considerably softer than that of a quark jet;
- · gluon jets are less collimated than quark jets.

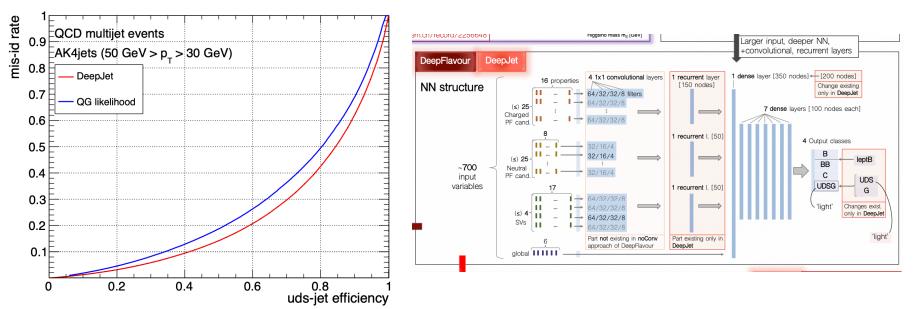






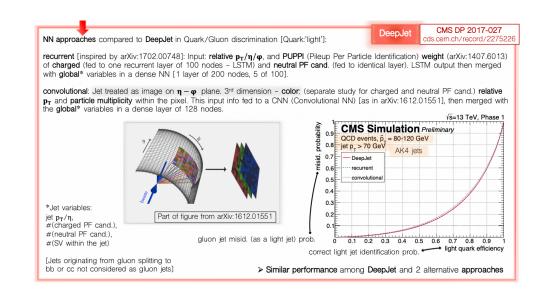
ParticleNet [Phys. Rev. D 101 (2020) 056019]

- Customized neural network architecture based on the particle cloud representation → jet as an unordered set of particles
 - Uses a permutation-invariant graph neural network architecture
- In CMS:
 - multi-class tagger for t/W/Z/H tagging
 - same inputs as DeepAK8 (PF candidates/secondary vertices)
 - significant performance improvement
 - Mass decorrelation obtained with training using a dedicated signal sample with flat mass spectrum: m_X ∈ [15, 250] GeV

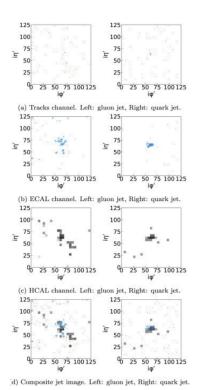


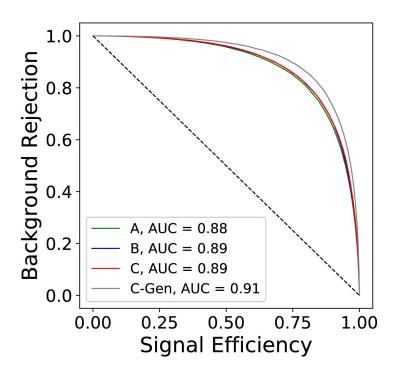
DeepJet

- DeepJet: Deep neural network algorithm
 - 16(8) properties of up to 25 charged (neutral) particle-flow jet constituents
 - 12 properties of up to 4 secondary vertices associated with the jet



2 Comparable approches to DeepJet [CMS-DP-2017-027]


√s=13 TeV Misid. probability CMS Simulation Preliminary QCD events, $\hat{p}_{\perp} = 30-50 \text{ GeV}$ ⁻jet p₋ > 30 GeV DeepJet convolutional 0.5 0.4 0.3 0.2 0.1 0.3 0.5 0.6 0.7 0.8 0.9 0.2 0.4 0.1 Light quark efficiency


Long short-term memory (LSTM)

End-to-end jet classification [NIM A 977 (2020) 164304]

