

Measurements of processes sensitive to quartic electroweak couplings in ATLAS

Marc-André Pleier on behalf of the ATLAS collaboration

March 29 2023

Standard Model Production Cross Section Measurements

Standard Model Production Cross Section Measurements

VBS/VVV Production and aQGCs

Quartic self-interactions of W/Z/ γ never observed before LHC era – untested territory!

• Quartic self interactions just involving γ/Z forbidden...

Overview of studied <u>aQGCs</u> :	$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} rac{c_i}{\Lambda^2} \mathcal{O}_i + \cdots$
------------------------------------	---

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	✓	✓			✓				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\mathcal{O}_{M,6},\mathcal{O}_{M,7}$	✓	✓	✓	✓	✓	✓	✓		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		✓	✓	✓	✓	✓	✓		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	✓	✓	✓	✓	✓	✓	✓	✓	✓
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		✓	✓	✓	✓	✓	✓	✓	✓
$\mathcal{O}_{T,8}\;,\!\mathcal{O}_{T,9}$					✓	✓	✓	✓	✓

Experimental access: aQGCs modify total production rate as well as event kinematics

Use cross-section measurement or kinematics to constrain aQGCs

Unitarisation methods: Form factor, K-matrix, clipping

$$\lambda(\hat{s}) = \frac{\lambda_0}{(1+\hat{s}/\Lambda_{FF}^2)^n}$$

Vector Boson Scattering

Vector Boson Scattering

VV → VV provides insight into EWSB mechanism, quartic couplings access:

electroweak VVjj production includes:

strong VVjj production includes:

 Experimental signature (W[±]W[±] example): tag

- 1,2 = Central, high-p_⊤ charged leptons from V decays
- 3,4 = Forward/backward tagging jets (large m_{jj} and well separated in y)

accepted by JHEP

Electroweak $Z(vv)\gamma$ jj production

Isolated high $E_T \gamma$ (>150 GeV), MET > 120 GeV, m_{jj} > 300 GeV

- High Energy, high v-BR => increased aQGC sensitivity
- Dominant BG: QCD Z(νν)γ jj, Wγ jj: use simultaneous fit to data CRs
- MET, $e \rightarrow \gamma$ and $j \rightarrow \gamma$ mis-ID evaluated using data-driven methods

Extract electroweak signal with fit to BDT classifier

- observed (expected) significance of the result is 3.2σ (3.7σ)
- combination with lower $E_T \gamma ATLAS observation$ yields 6.3σ (6.6σ)

$$\mu_{Z\gamma \text{EWK}} = 0.78^{+0.25}_{-0.23} \text{ (stat.)}$$
 $^{+0.21}_{-0.17} \text{ (syst.)}$

$$\sigma_{Z\gamma \text{EWK}}^{\text{pred}} = 0.98 \pm 0.02 \text{ (stat.)}$$

 $\pm 0.09 \text{ (scale)} \pm 0.02 \text{ (PDF)} \text{ fb}$

$$\sigma_{Z\gamma \text{EWK}} = 0.77^{+0.34}_{-0.30} \text{ fb.}$$

[arXiv:2208.12741]

accepted by JHEP

Electroweak Z(νν)γ jj production - aQGC

Use high $E_T \gamma$ tail to constrain aQGCs

- (Un-)unitarized limits are obtained for coefficients of EFT dimension-8 operators T0, T5, T8, T9, M0, M1 and M2
- "Clipping" is used to illustrate unitarization impact: remove anomalous signal contribution for $m_{Z\gamma} > E_c$ (using particle-level information)

Coefficient	Observ	ved limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]				
f_{T0}/Λ^4	[-9	$.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$				
f_{T5}/Λ^4	[-8	$.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$				
f_{T8}/Λ^4	[-5	$.9, 5.9] \times 10^{-2}$	$[-8.1, 8.0] \times 10^{-2}$				
f_{T9}/Λ^4	[-1	$.3, 1.3] \times 10^{-1}$	$[-1.7, 1.7] \times 10^{-1}$				
f_{M0}/Λ^4	[-4	.6, 4.6]	[-6.2, 6.2]				
f_{M1}/Λ^4	[-7	.7,7.7]	$[-1.0, 1.0] \times 10^1$				
f_{M2}/Λ^4	[-1	.9, 1.9]	[-2.6, 2.6]				
Coefficient	$E_{\rm c}$ [TeV]	Observed limit [TeV ⁻⁴] Expected limit [TeV ⁻⁴]				
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$				
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$				
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$				
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$				
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$				
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$				
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^1$	$[-3.0, 3.0] \times 10^1$				

Triboson Production

Measurement of Zyy production

Charged lepton pair (e^+e^- , $\mu^+\mu^-$) + 2 isolated photons

- Enhance signal (ISR) region: $m_{\ell\ell}$ + min($m_{\ell\ell\gamma 1}$, $m_{\ell\ell\gamma 2}$) > 2 m_Z
- Dominant BG: $j \rightarrow \gamma$ mis-ID, evaluated using data-driven method

Integrated cross-section measurement precision: 12%

- Unfolded differential cross-sections provided for first time
- Test SM predictions at up to NLO accuracy with Sherpa & MG5

Integrated fiducial cross-section [fb]

Measurement of Zyy production - aQGC

Use unfolded p_T^{ll} to constrain aQGCs

 Ununitarized limits are obtained for coefficients of EFT dimension-8 operators T0, T1, T2, T5, T6, T7, T8 and T9

"Clipping" is used to illustrate unitarization impact as a function of E_c,

the $\ell\ell\gamma\gamma$ invariant mass

First observation of Wyy production

Charged lepton (e, μ) + MET + 2 isolated photons

- Dominant BG: $j \to \gamma$ mis-ID and $e \to \gamma$ mis-ID in electron channel, evaluated using data-driven methods
- ttγ background normalization uses simultaneous fit to data CR

Observed (exp.) significance: 5.6σ (5.6σ): **First observation!**

- Good agreement between prediction and measurement
- Dominant sources of uncertainty: data-driven bg & statistical

First observation of WZ_γ production

3 charged leptons (e, μ) + MET + 1 isolated photon

- Dominant BG: $j \to \gamma$ and $j \to \ell$ mis-ID, using data-driven evaluation
- ZZ γ and ZZ (e $\rightarrow \gamma$) bg normalization uses simultaneous fit to data CR

Observed (exp.) significance: 6.3σ (5.0σ): First observation!

- $\mu_{WZ\gamma} = 1.34 \pm 0.21 \text{ (stat.)} \pm 0.10 \text{ (syst.)} \pm 0.07 \text{ (theory)}$
- Consistent with SM prediction within 1.5 standard deviations

Conclusions

Harvest of Run 2 multi-boson analyses still going strong:

- Precision measurements of first VBS/triboson processes,
- Establishing new triboson processes,
- Improving sensitivity to new couplings.

VBS/VVV processes are unique windows into testing the SM

No aQGCs seen so far

Conclusions

Harvest of Run 2 multi-boson analyses still going strong:

- Precision measurements of first VBS/triboson processes,
- Establishing new triboson processes,
- Improving sensitivity to new couplings.

VBS/VVV processes are unique windows into testing the SM

No aQGCs seen so far

The SM is a tough nut to crack,

but there is a lot more

data to come!

LHC data