

Light Diphoton Resonances

Chris Meyer

on behalf of the

² We found the Higgs! Seems like just yesterday...

BUT is it the only one?

³ Does history repeat itself?

Once upon a time...

...but later!

There was one electron
 Thomson, 1897

1936 \rightarrow discovery of muon

4 Does history repeat itself?

Once upon a time...

- There was one electron
 - Thomson, 1897

...but later!

1936 \rightarrow discovery of muon

There was one gauge boson
 ○ Photon → Einstein, 1905

1983 \rightarrow discovery of W/Z

5 Does history repeat itself?

Once upon a time...

- There was one electron
 - Thomson, 1897

1936 \rightarrow discovery of muon

....but later!

- There was one gauge boson
 Photon → Einstein, 1905
- Simple hypothesis...

1983 \rightarrow discovery of W/Z

...Nature more creative!

⁶ Does history repeat itself?

Once upon a time...

- There was one electron
 - **Thomson, 1897**

...but later!

1936 \rightarrow discovery of muon

There was one gauge boson
 ○ Photon → Einstein, 1905

1983 \rightarrow discovery of W/Z

We've only found **one Higgs boson** so far...

...why not more? Supersymmetry and other theories include them!
 → handy for solving hierarchy problem, etc.

7 To be a bit more concrete

• Laundry list of popular extensions to the Higgs sector:

- SUSY w/ 2 Higgs doublet
- Vector-like fermions w/ 2 Higgs doublet
- Composite Higgs
- Heavy QCD axion
- R-axion in SUSY-breaking models
- Aim to explain one or more open questions:
 - Hierarchy problem
 - \circ Axion \rightarrow mediator of dark-matter freeze out, trigger of baryogenesis

8 What we've found

BUT is it the only one?

⁹ Zoom out a bit...

¹⁰ Focus on the lower side

- Diphoton mass spectra
- Low-mass bump \rightarrow new physics

11 Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- 3. $Z \rightarrow ee background$
- 4. Scalar signal
- 5. Uncertainties

Results

6.

¹² Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- 3. $Z \rightarrow ee background$
- 4. Scalar signal
- 5. Uncertainties

6. Results

	Very Low Mass	Low Mass
Energy	22 GeV < E _T	
Identification	"Tight"	
Isolation	$E_{calo} < 0.065 E_{T}$,	E _{track} < 0.05 E _T
Boost	50 GeV < $p_{T,\gamma\gamma}$	

	Very Low Mass	Low Mass
Energy	22 GeV < E _T	
Identification	"Tight"	
Isolation	E_{calo} < 0.065 E_{T} ,	Ξ_{track} < 0.05 E_{T}
Boost	50 GeV < $p_{T,\gamma\gamma}$	

¹⁵ Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- 3. $Z \rightarrow ee background$
- 4. Scalar signal
- 5. Uncertainties

6. Results

¹⁶ Talk outline

- 1. Event Selection
- 2. Continuum background (үү, үj, jj)

¹⁷ Background model \rightarrow analytic function

• Very low mass:

- Low mass:
 - UU/CU → Landau + exponential
 - \circ CC \rightarrow Fifth-order Bernstein polynomial

¹⁸ Background model \rightarrow analytic function

• Very low mass:

¹⁹ Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- 3. $Z \rightarrow ee background$
- 4. Scalar signal
- 5. Uncertainties

6. Results

²⁰ $Z \rightarrow ee background$

- Derive Smirnov transform
 of ee → yy in MC
 - Map cumulative distribution functions

²¹ $Z \rightarrow ee background$

- Derive Smirnov transform
 of ee → yy in MC
 - Map cumulative distribution functions

²² $Z \rightarrow ee background$

- Derive Smirnov transform of ee → yy in MC
 - Map cumulative distribution functions
- Apply to $Z \rightarrow ee$ in **data**
- (Mostly) data-driven normalization factor

²³ Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- **3.** $Z \rightarrow ee$ background
- 4. Scalar signal
- 5. Uncertainties

6. Results

²⁴ Signal model

- Model signal with double-sided Crystal Ball function
 - Gaussian core
 - Exponential tails

²⁵ Talk outline

- 1. Event selection
- 2. Continuum background (үү, үj, jj)
- **3.** $Z \rightarrow ee background$
- 4. Scalar signal
- 5. Uncertainties

6. Results

²⁶ Background uncertainty

- Uncertainty from *spurious signal* method
- Fit **background only** template with **signal+background** model
- A perfect model extracts zero signal from background template
 Caveat: statistical fluctuations of background template...
- Any (spurious) **non-zero signal** extracted is taken as **uncertainty**

²⁷ Background template

- MC yy background template
- Add γj and jj based on fraction derived in data control regions

²⁸ Background template

- MC yy background template
- Add γj and jj based on fraction derived in data control regions

Extracted spurious signal compared with data uncertainty

²⁹ Background template

- MC γγ background template
- Add γj and jj based on fraction derived in data control regions

- Smooth with Gaussian Process
 Ourrently ONLY very low mass
- Reduces spurious signal from statistical fluctuations

³⁰ Background uncertainty (very low mass)

• Gaussian Process smoothing significantly reduces spurious signal uncertainty due to limited MC events

³¹ Room for improvement in low-mass...

³² Other systematic uncertainties

Very low mass

Source	Uncertainty		
On $\sigma_{\rm fid} \cdot \mathcal{B}(X \to \gamma \gamma)$ [%]			
Pile-up modelling	± 3.5 (at 10 GeV) to ± 2 (beyond 15 GeV), mass dependent		
Photon energy resolution	± 2.5 to ± 2.7 , mass dependent		
Scale and PDFs uncertainties	± 2.5 to ± 0.5 , mass dependent		
Trigger on closely spaced photons	± 2 (at 10 GeV) to <0.1 (beyond 35 GeV), mass dependent		
Photon identification	±2.0		
Isolation efficiency	±2.0		
Luminosity (2015–2018)	±1.7		
Trigger	±1.0		
Signal shape modelling	<1		
Photon energy scale	negligible		
Background modellin			
Spurious signal (relative to δS)	30–65 events (10%–30%), mass dependent		

Uncertainty [%] Remarks Signal yield Luminosity ± 2 $\pm 1.4 - 1.7$ Trigger eff. m_X -dependent Photon identification eff. $\pm 1.5 - 2.3$ m_X -dependent Isolation eff. ± 4 Photon energy scale $\pm 0.13 - 0.49$ m_X -dependent Photon energy resolution $\pm 0.053 - 0.28$ m_X -dependent $\pm 1.8 - 4.1$ Pile-up m_X -dependent Production mode $\pm 2.4 - 25$ m_X -dependent Signal modeling Photon energy scale $\pm 0.3 - 0.5$ m_X - and category-dependent Photon energy resolution $\pm 2 - 8$ m_X - and category-dependent Migration between categories -2.0/+1.0/+4.1category-dependent (UU/CU/CC) Material Non-resonant Background Spurious Signal 128/104/79 ratio to the expected spurious signal uncertainty (604/496/181 events) (category-dependent) DY Background modeling Peak position $\pm 0.1 - 0.2$ category-dependent

category-dependent

category-dependent

Low mass

 $\pm 2 - 3$

 $\pm 9 - 21$

Source

Peak width

Normalization

- ³³ Talk outline
 - 1. Event selection
 - 2. Continuum background (үү, үj, jj)
 - **3.** $Z \rightarrow ee background$
 - 4. Scalar signal
 - 5. Uncertainties

Results

6.

³⁴ Any significant bumps? Sadly no :-(

Local \rightarrow 3.1 σ / Global \rightarrow 1.5 σ

³⁵ Upper limits

³⁶ Overview of axion limits

- No low-mass diphoton resonances found (yet)
- Continuing to improve techniques to keep background uncertainties smaller than statistical uncertainties
- Stay tuned for future results!

³⁸ Always something to look forward to...

