Searches for Dark Matter with the ATLAS Detector

John Stupak III on behalf of the ATLAS collaboration

The UNIVERSITY of OKLAHOMA

3/30/23

ntrocuction

- Evidence for Dark Matter (DM) from a variety of astrophysical sources
 - Galactic cluster velocity dispersion
 - Galactic rotation curves
 - Cosmic microwave background
 - Gravitational lensing
- If DM is particle-like and has non-gravitational interactions, can be probed at the LHC
 - Complementarity with direct and indirect detection
- WIMP Miracle
 - Assuming thermal production and subsequent freeze out, correct relic abundance obtained for weak scale DM mass and coupling

Overview

- If DM can be produced at the LHC, there must be some mediator which couples DM to SM
 - Mediator could be BSM or SM (Z or H)
- DM is invisible to ATLAS

Overview

- If DM can be produced at the LHC, there must be some mediator which couples DM to SM
 - Mediator could be BSM or SM (Z or H)
- DM is invisible to ATLAS
 - 2 complementary search strategies:
 - Search for DM recoiling against visible particles \rightarrow broad MET excess

Overview

- If DM can be produced at the LHC, there must be some mediator which couples DM to SM
 - Mediator could be BSM or SM (Z or H)
- DM is invisible to ATLAS
 - 2 complementary search strategies:
 - Search for DM recoiling against visible particles \rightarrow broad MET excess
 - Search for decays of mediator to $SM \rightarrow$ resonance at mediator mass

HIGGS Porta

John Stupak - University of Oklahoma

- $B_{SM}(h \rightarrow ZZ^* \rightarrow 4v) \approx 0.1\%$
- If $m_{\chi} < m_{h}/2$, $h \rightarrow \chi \chi$ is allowed
- Global fit of visible decay modes: $B(h \rightarrow inv) < 13\%$ [Nature 607, 52–59 (2022)]
- Many production modes to probe:

$\mathbf{Hogs} \rightarrow \mathbf{nvisible}$

VBF	JHEP 08
Z(ll)h	PLB 829 (2
tth	ATLAS-CO
$VBF+\gamma$	EPJC 82
ggF	PRD 103 (2
combo	2301

Higgs -> Invisible: VBF

- Distinctive topology pair of highly-energetic forward jets with:
 - Wide pseudorapidity gap ($\Delta \eta_{ii}$)
 - Large invariant mass (m_{ii})
- Reject QCD by requiring large MET
 - Dominant background: Z(vv)+jets
- Background-enriched control regions (CRs) defined for $Z(\ell\ell)$, $W(\ell\nu)$, and QCD multijet backgrounds*
- Simultaneous likelihood fit in signal region (SR) and CRs to constrain backgrounds, test for presence of signal
 - W and Z have similar mass/couplings/spin $\rightarrow \sigma_W/\sigma_Z$ constrained to SM prediction (NLO QCD/EWK)
 - Validated in events with $2 < \Delta \phi_{ii} < 2.5$
- SR (and CRs) categorized in 16 bins of varying signal purity

*MET calculated by excluding charged leptons ("MET" = V p_T)

[JHEP 08 (2022) 104]

	SR	W(ℓv)	
N٤	0	1	
Nj		2-4	
рт(ј1)		> 80 GeV	
рт(ј2)	> 50 GeV		
$\eta_{\mathrm{j}1}\cdot\eta_{\mathrm{j}2}$		< 0	
MET	2	> 160 Ge\	
$\Delta \eta_{ m jj}$		> 3.8	
Δφ _{jj}		< 2	
mj	;	> 800 Ge\	

Higgs -> Invisible: VBF

background-only fit

Source	Contribution to $\pm 1\sigma$ (= 0.052)
Data stats.	0.029
V+ jets data stats.	0.022
MC stats.	0.014
Multijet	0.021
μ/e -fakes	0.019
Lepton	0.017
(Lepton – muon only)	0.0049
(Lepton – electron only)	0.016
JER	0.015
JES	0.011
Remaining	0.012
V+ jets – theory	0.015
Signal – theory	0.0056

uncertainties

[JHEP 08 (2022) 104]

0.103

0.144

0.075

0.196

0.145

John Stupak - University of Oklahoma

- Consider 0,1, and 2l final states
 - Includes a new 0l, low-pr channel
 - Further subdivided into 25 SRs
- Dominant backgrounds: tt, ttZ(vv), and Z+jets
 - Constrained in dedicated CRs
- Triggers: MET, b jet, lepton
- Reclusters R = 0.4 jets into large-R jets for top tagging

$Higgs \rightarrow Invisible: tth$

Adapted from a stop search [EPJC 80 (2020) 737] See Francesco's talk (next)

$Higgs \rightarrow Invisible: tth$

Analysis	Best fit $\mathcal{B}_{H \to \mathrm{inv}}$	Observed upper limit	Expe upper
ttOL	$0.48^{+0.27}_{-0.27}$	0.95	0.52
tt1L	$-0.04^{+0.35}_{-0.29}$	0.74	0.80
tt2L	$-0.08^{+0.20}_{-0.19}$	0.36	0.40
<i>ttH</i> comb.	$0.08^{+0.15}_{-0.15}$	0.38	0.30

Higgs → Invisible: Combination

- Statistical combination of all searches
- Searches for $h \rightarrow invisible$ are largely orthogonal
 - Overlapping data (signal MC) events between ggF and VBF: 0.2% (1.5%)
 - Negligible impact of limit

Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 95% U.L.
$-0.09^{+0.19}_{-0.20}$	0.329	$0.383^{+0.157}_{-0.107}$
$0.04\substack{+0.17 \\ -0.15}$	0.375	$0.346^{+0.151}_{-0.097}$
0.08 ± 0.15	0.376	$0.295\substack{+0.125\\-0.083}$
0.00 ± 0.09	0.185	$0.185\substack{+0.078\\-0.052}$
0.05 ± 0.05	0.145	$0.103\substack{+0.041\\-0.028}$
0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
$-0.02^{+0.14}_{-0.13}$	0.252	$0.265\substack{+0.105 \\ -0.074}$
0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$

$B(h \rightarrow inv) < 13\%$ from visible channels

John Stupak - University of Oklahoma

uncertainties

Source of uncertainty	Run2	Η
Luminosity / pile up	0.005	
Leptons / Photons	0.014	
Jets	0.013	
Flavour tagging	0.002	
E_T^{miss}	0.004	
MC statistics	0.013	
All experimental	0.024	
V+jets modelling	0.019	
Other background Modelling	0.014	
Data-driven Backgrounds	0.011	
Signal Modelling	0.002	
All theory	0.025	
Total systematic uncertainty	0.037	
Data statistics	0.011	
Background normalization	0.012	
Total statistical uncertainty	0.017	
Total uncertainty	0.041	

S-Channel Simplified Models

John Stupak - University of Oklahoma

Simplified Models

- Assume DM is a Dirac fermion
- Consider CP-even and CP-odd mediators
 - Spin-1: flavor-independent couplings to SM
 - Spin-0: Yukawa-like couplings to SM (minimal flavor violation scenario)
- MET- and resonance-based searches → probe different regions of high-dimensional phase space

l mediators ouplings to SM s to SM (minima

MET-Based Searches

- ISR is dictated by SM \rightarrow model-independent
- Systematics limited \rightarrow precise background estimates vital
- Mono-jet
 - σ_W/σ_Z constrained to SM prediction (NLO QCD/EWK)
 - Simultaneous likelihood fit in SR and CRs used to constrain dominant $Z \rightarrow vv$ background

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu \mu$	$W \rightarrow ev$	$Z \rightarrow ee$	Тор
Primary vertex		at least one	with ≥ 2 associate	ted tracks with	$p_{\rm T} > 500 \mathrm{MeV}$	
Trigger		$E_{\mathrm{T}}^{\mathrm{miss}}$		single	e-electron	$E_{\rm T}^{\rm miss},$ single- electron
$p_{\rm T}^{\rm recoil}$ cut	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(ee) > 200 \mathrm{GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(\mu) >$ 200 GeV or $ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(e) >$ 200 GeV
Jets		u	$p \text{ to 4 with } p_{\text{T}} >$	> 30 GeV, $ \eta <$	2.8	
$ \Delta \phi(\text{jets}, \mathbf{p}_{\text{T}}^{\text{recoil}}) $		> 0.4	(> 0.6 if 200 G	$eV < E_T^{miss} \le 2$	250 GeV)	
Leading jet		<i>p</i> _T	$> 150 \text{GeV}, \eta $	$< 2.4, f_{\rm ch}/f_{\rm max}$	> 0.1	
			·	· ·		·

[PRD 103 (2021) 112006]

[ATL-PHYS-PUB-2022-036] Resonance-Based Searches

- Resonance searches can be interpreted in DM simplified models
 - High mass: limited by small cross section
 - Low mass: limited by trigger and background rejection

Summary

John Stupak - University of Oklahoma

+jet, 139 fb⁻¹; PRD 103 (2021) 112006

John Stupak - University of Oklahoma

2HDMHa Mode

- CP conserving type-2 2HDM (in the alignment and decoupling limit) with additional pseudoscalar
 - Gauge invariant, renormalizable, UV complete
- Mixing between A and a couples SM to DM
- 14 parameters \rightarrow 5 (assumptions)

t/b resonance

John Stupak - University of Oklahoma

Nono- $h(\tau\tau)$

- Search for $h \rightarrow \tau_h \tau_h$ in association with MET
 - Optimized separately for low- and high-mass A
- Di- τ_{had} + MET trigger allows reduced MET threshold (150 Ge
- "Fake factor" method used to model background with fake $\tau_{\rm f}$
 - Assumption: $N_{tight}/N_{loose} = f(p_T, \eta, N_{track}, g/q initiated)$
 - Measure N_{tight}/N_{loose} in fake-enriched CR
 - Apply this ratio to loose au candidates to obtain fake tau co
- Backgrounds with real τ_h (Z+jets, ttbar) normalized to data in CRs
 - Modeling checked in 4 VRs

mono-h(bb)	JHEP11(
mono-h($\gamma\gamma$)	JHEP10(
mono-h($\tau\tau$)	ATLAS-COI

$ au^+$		Common SR Pre	selection
	$\Delta R(\tau_1,\tau_2)$	< 2	
	$m_{ m T}^{ m tot}$	$> 50 { m GeV}$	Ι
	$m_{ m vis}(au_1, au_2)$	$\in [40, 125]$ C	${ m GeV}$
	$m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$	> 100 GeV	V
eV)	$\operatorname{Charge}(\tau_1, \tau_2)$	$q(au_1) imes q(au_2)$:	= -1
	N_{b-jet}	0	
h		$\operatorname{Low}_{m_A}\operatorname{SR}$	$\operatorname{High}_{m_{2}}$
	$\Delta R(\tau_1,\tau_2)$	$\in [0.6, 1.9]$	<
	$m_{ m T}^{ m tot}$	_	> 400
	$m_{\mathrm{T}}^{ au_1}$	$> 50 { m ~GeV}$	_
	$m_{\mathrm{T}}^{ au_2}$	$> 25 { m GeV}$	_
ntribution	$m_{ m vis}(au_1, au_2)$	$> 75 { m ~GeV}$	$\in [40, 128]$
	$m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2}$ Binning	$[100, 250, 400, 550, \infty] { m GeV}$	$[400, 750, \circ]$

$$m_{\rm T}^{\rm tot} = \sqrt{(p_{\rm T}(\tau_1) + p_{\rm T}(\tau_2) + p_{\rm T}^{\rm miss})^2 - (p_x(\tau_1) + p_x(\tau_2) + p_x^{\rm miss})^2 - (p_y(\tau_1) + p_y(\tau_2) + p_y^{\rm miss})^2}$$

Nono- $h(\tau\tau)$

m_A [GeV]

[ATLAS-CONF-2022-069]

John Stupak - University of Oklahoma

Summary

[ATL-PHYS-PUB-2022-036]

Strongly-Interacting DM

John Stupak - University of Oklahoma

- Flavor diagonal dark hadrons: decay to SM
- Flavor off-diagonal dark hadrons: invisible
- Modeling of non-perturbative dark shower is complicated
 - Bottom up approach: ignore underlying physics and parameterize shower in terms of lifetime and $R_{inv} \equiv \langle$

Dark acD

- Flavor diagonal dark hadrons: decay to SM
- Flavor off-diagonal dark hadrons: invisible
- Modeling of non-perturbative dark shower is complicated
 - Bottom up approach: ignore underlying physics and parameterize shower in terms of lifetime and $R_{inv} \equiv \langle$

Dark QCD

Semi-Visible Jets

- Search for (prompt) semi-visible jets produced through a *t*-channel mediator
 - Large MET, aligned with jet
 - DM searches typically veto small Δφ(j,MET) to reject QCD

[ATLAS-CONF-2022-038]

• SR:

- $H_T > 600 \text{ GeV}$
- MET > 600 GeV
- ≥2 jets
 - ≤1 b-tag
- $\Delta \phi$ (MET,jet) < 2
- 0 leptons
- CRs for W+jets (1 μ /0b), top (1 μ /1b), and Z+jets (2 μ /0b)
- VRs with reduced MET

Semi-Visible Jets

- SR binned in terms of $|\phi_{j1}-\phi_{j2}|$ and $p_T^{bal} =$
- No excess over SM
 - Excludes mediator masses >2.4–2.7 TeV for 0.2< R_{inv} <0.8 (λ =1)

John Stupak - University of Oklahoma

[ATLAS-CONF-2022-038]

$$= \frac{\left| \vec{p}_{\rm T}(j_1) + \vec{p}_{\rm T}(j_2) \right|}{\left| \vec{p}_{\rm T}(j_1) \right| + \left| \vec{p}_{\rm T}(j_2) \right|}$$

Concusion

- ATLAS has a strong DM search program
 - Wide range of models/signatures probed
- Complementarity between:
 - Colliders and direct/indirect detection experiment
 - Visible and MET-based searches
 - Various visible final states
- No significant evidence for DM yet
 - Results shown here are based on $\leq 5\%$ of the anticipated LHC luminosity
 - Stay tuned!

John Stupak - University of Oklahoma

Backup

John Stupak - University of Oklahoma

Vector Mechator

Axial-Vector Mediator

[ATL-PHYS-PUB-2022-036]

[ATL-PHYS-PUB-2022-036] **Direct Detection Comparison**

spin-dependent cross section axial-vector mediator

spin-independent cross section vector mediator

- Ol final state
 - \geq 4 jets (2 b-tagged)
 - High-p_T channel
 - MET>250 GeV, $S = \frac{E_{\rm T}^{\rm miss}}{\sqrt{\sigma_{\rm T}^2 (1 \rho_{\rm TT}^2)}} > 14$
 - $p_{T,i2} > 80 \text{ GeV}$
 - ≥ 1 top tag (m>120 GeV)
 - Categorize events based on mass of subleading jet and $m_{{
 m T2},\chi^2}$
 - Low-p_T channel (new)
 - MET>160 GeV, S > 10
 - Categorize events based on presence/ mass of leading jet ($p_T > 200 \text{ GeV}$)

John Stupak - University of Oklahoma

[ATLAS-CONF-202

$Higgs \rightarrow Invisible: tth$

	Variables	SR0X	SRWX	SR
	N _{lepton}		= 0	
	Orthogonalisation	$E_{\rm T}^{\rm miss} < 250~{ m Ge}$	N or $S < 14$ or $m_{\text{large-radii}}^{R=1.2}$	_{us jet} < 120 GeV
	$E_{\rm T}^{\rm miss}$ [GeV]	> 160 < 250 , when passing <i>b</i> -jet triggers		
	S		> 10	
QCD	$\Delta \phi_{\min}(\boldsymbol{p}_{\mathrm{T},1-4}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$	> 1.0	> (0.5
g→bb	$\Delta R\left(b_{1},b_{2}\right)$		> 1.2	
$N_{\text{large-radius jet}} = 0$		>	0	
	m _{large-radius jet} [GeV]		(40, 130)	2
	ΔR_{\min} (large-radius jet, <i>b</i> -tagged jets)	_	_	<
tt	cosh _{max}	< 0.5	< 0.6	<
	$\chi^2_{t\bar{t},\text{had}}$	< 4	< 6	<
	$p_{\mathrm{T}}^{t\bar{t}}/E_{\mathrm{T}}^{\mathrm{miss}}$	(0.7, 1.2)	(0.5,	1.2)

22	-007]

RTX	
T	
130	
1.2	
0.7	
< 8	

No excess over SM

$Higgs \rightarrow Invisible: tth$

[ATLAS-CONF-2022-007]

Higgs \rightarrow Invisible: Combination

- Statistical combination of all searches
- Searches for $h \rightarrow invisible$ are largely orthogonal
 - Overlapping data (signal MC) events between ggF and VBF: 0.2% (1.5%)
 - Negligible impact of limit

	Best fit $\mathcal{B}_{H \to \text{inv}}$	Observed 95% U.L.	Expected 95% U.L.
	$-0.09^{+0.19}_{-0.20}$	0.329	$0.383^{+0.157}_{-0.107}$
γ	$0.04^{+0.17}_{-0.15}$	0.375	$0.346^{+0.151}_{-0.097}$
	0.08 ± 0.15	0.376	$0.295^{+0.125}_{-0.083}$
iss	0.00 ± 0.09	0.185	$0.185^{+0.078}_{-0.052}$
	0.05 ± 0.05	0.145	$0.103^{+0.041}_{-0.028}$
	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
	$-0.02^{+0.14}_{-0.13}$	0.252	$0.265^{+0.105}_{-0.074}$
).	0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$

Systematics:

Source of uncertainty
Luminosity / pile up
Leptons / Photons
Jets
Flavour tagging
E_T^{miss}
MC statistics
All experimental
V+jets modelling
Other background Modelling
Data-driven Backgrounds
Signal Modelling
All theory
Total systematic uncertainty
Data statistics
Background normalization
Total statistical uncertainty
Total uncertainty

