

Search for pair production of squarks or gluinos decaying to sleptons or WZ bosons with two same-sign or three leptons final states using 139 fb^{-1} ATLAS data

Shiyi Liang, on behalf of ATLAS Collaboration

Institute of High Energy Physics, Chinese Academy of Sciences

30 March 2023

DIS2023: Deep-Inelastic Scattering and Related Subjects

Outline

Introduction of Super-symmetry

${\widetilde{q}}/{\widetilde{g}}$ search in SS/3L final states

Summary

30 March 2023

Introduction of Super-symmetry

Introduction of Super-symmetry

Super-symmetry(SUSY): fermion-boson symmetry

Minimal Super-symmetric Standard Model

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	$^{+1}$	$H^0_u H^0_d H^+_u H^d$	$h^0 H^0 A^0 H^{\pm}$
			$\tilde{u}_L \tilde{u}_R \tilde{d}_L \tilde{d}_R$	(same)
squarks	0	-1	$\tilde{s}_L \ \tilde{s}_R \ \tilde{c}_L \ \tilde{c}_R$	(same)
			$\tilde{t}_L \ \tilde{t}_R \ \tilde{b}_L \ \tilde{b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$
			$\tilde{e}_L \ \tilde{e}_R \ \tilde{\nu}_e$	(same)
sleptons	0	-1	$\tilde{\mu}_L \tilde{\mu}_R \tilde{\nu}_\mu$	(same)
			$\tilde{\tau}_L \tilde{\tau}_R \tilde{\nu}_\tau$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_\tau$
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^{+}_{u} \widetilde{H}^{-}_{d}	\tilde{C}_1^{\pm} \tilde{C}_2^{\pm}
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	1/2 (3/2)	$^{-1}$	Ĝ	(same)

R-parity: $P_R = (-1)^{3(B-L)+2S}$ SUSY particles \rightarrow odd R-parity; SM-particles \rightarrow even R-parity

R-parity conserved (RPC): SUSY particles produced in pairs, Lightest SUSY particle (LSP/ $\tilde{\chi}^0_1)$ is stable

\tilde{q}/\tilde{g} search in SS/3L final states

30 March 2023

Search for \tilde{q}/\tilde{g} in SS/3L final states

- Target process: pair production of \tilde{q} or \tilde{g} decaying to sleptons or WZ bosons.
- Low SM backgrounds in two same-sign or three leptons final state increase sensitivity for Beyond-Standard-Model(BSM) processes with this final states.
- Consider four RPC signal models:

30 March 2023

Analysis strategy

Input: full run2 data of 139 fb^{-1} from ATLAS detector of LHC. **Background estimation**

- Prompt (irreducible) backgrounds:
 - WZ+jets: normalized to data in a dedicated CR.
 - Others: estimated with MC samples
- Detector (reducible) backgrounds:
 - Charge-flip background, Fake/non-prompt lepton: data-driven method

Strategy

- Search for excesses of data over predicted SM processes in signal regions. If no significant excess is found, draw exclusion limit on *ğ*/*q*-*χ*₁⁰ mass plane.
 - For each signal model, design several signal regions targeting benchmark points in different region on the \tilde{g}/\tilde{q} - $\tilde{\chi}_1^0$ mass plane.
 - For each signal grid, use exclusion fit result from signal region providing lowest expected CLs(modified confidence level).
 - Multiple kinematic variables as well as the ratio of these variables are used in signal region definition.

Event selection of \tilde{g} production model

SR name	$n_{\rm Sig}(\ell)$	n _{b-jets}	$n_{ m jets}$	$p_{\mathrm{T}}^{\mathrm{jet}}[GeV]$	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	$E_{\mathrm{T}}^{\mathrm{miss}}/\sum p_{\mathrm{T}}^{\mathrm{jet}}$	$p_{\mathrm{T}}^{\ell 2}[\mathrm{GeV}]$	other	
SRGGSlep-L					-	> 0.4	> 30	$E_{\mathrm{T}}^{\mathrm{miss}}/\sum p_{\mathrm{T}}^{\ell} > 1.4$	
SRGGSlep-M	$\geq 3^{\dagger}$	0	\geq 4	≥ 40	> 150	> 0.3	> 70	$\Delta \phi (\ell 1 \ell 2, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) > 0.7$	
SRGGSlep-H					> 100	-	-	$\sum p_{ m T}^{ m jet} > 1200 GeV$	
t. SEOS main	$\frac{1}{2}$ SEOS pairs with $\frac{91}{2}$ m ≤ 101 GeV are not allowed								

Table: Signal regions of RPC GG 2-step slepton model

SR name	$n_{ m Sig}(\ell)(n_{ m BL}(\ell))$	n _{b-jets}	$n_{\rm jets}$	$p_{\mathrm{T}}^{\mathrm{jet}}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	$m_{\rm eff}[GeV]$	$\Delta \phi \big(\ell 1 \ell 2, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \big)$	$\operatorname{Sig}(E_{\mathrm{T}}^{\mathrm{miss}})$
SRGGWZ-L	≥ 2 (≥ 3)		≥ 6	> 25	> 200	$> 8 imes \sum p_{\mathrm{T}}^{\ell}$	> 0.2	> 6
SRGGWZ-M	≥ 2 (−)	0	≥ 6	> 40	> 190	> 1300	> 0.8	-
SRGGWZ-H	≥ 2 (-)		≥ 6	> 40	> 150	> 2100	-	-

Table: Signal regions of RPC GG 2-step WZ model

Event selection of \tilde{q} production model

SR name	$n_{Sig}(\ell)$	ℓ [GeV]	n _{b-jets}	njets	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}[{\rm GeV}]$	$m_{\rm eff}[GeV]$	$\Delta \phi(\ell 1 \ell 2, \mathbf{p}_T^{\text{miss}})$	
					other requ	irements			
SRSSSlep-L	3*	< 60	0	≥ 3	> 60, 60, 25	> 100	> 600	> 1.4	
		$\sum p_{\mathrm{T}}^{\ell} / \sum p_{\mathrm{T}}^{\mathrm{jet}} < 0.6$							
SRSSSlep-ML	3*	> 30	0	≥ 3	> 60, 60, 25	> 100	> 700	> 1.4	
			ET	niss/∑	$p_{\rm T}^{\ell} > 0.7$,	$\sum p_{\mathrm{T}}^{\ell} / \sum p_{\mathrm{T}}^{\mathrm{j}}$	et < 0.6		
SRSSSlep-MH	3*	> 40	0	≥ 2	> 60	> 200	> 1000	> 0.5	
			E	T T T	$\sum p_{\rm T}^{\ell} > 0.7$,	$\Delta R(\ell 1, \ell 2)$	> 0.2		
SRSSSlep-H	3*	> 40	0	≥ 2	> 60	> 200	> 2000	> 0.3	
					$\Delta R(\ell 1, \ell 2)$	2) > 0.5			
SRSSSlep-H (loose)	3*	> 40	0	≥ 2	> 60	> 200	> 1000	> 0.3	
$\Delta R(\ell 1, \ell 2) > 0.5$									
*: additional baseline	e lepton	s are not	allowed	d, nor	SFOS pairs v	with $81 < m_{\rm S}$	$_{\rm FOS} < 101$	GeV	

Table: Signal regions of RPC SS 2-step slepton model

	SR name	$n_{Sig}(\ell)$	n _{b-jets}	$n_{\rm jets}$	$p_{\rm T}^{\rm fee}$ [GeV]	$E_{\rm T}^{\rm miss}$ [Ge
	SRSSWZ-L			\geq 4	> 25	> 0.2 × n
	SRSSWZ-ML	>3	0	≥ 6	> 25	> 150
i for it	SRSSWZ-MH	25		≥ 5	> 40	> 200
χ χ_1^{\pm} χ_2^{\pm} χ_1^{\pm}	SRSSWZ-H			≥ 5	> 40	> 250
$\tilde{q} = \chi_1^{\tilde{\chi}_1^0} \chi_2^0 - \tilde{\chi}_1^0$	† : based on nu	ımber of	SFOS	pairs	with 81 < <i>r</i>	$n_{\rm SFOS} < 1$
\~~~~						

R name	$n_{\mathrm{Sig}}(\ell)$	n _{b-jets}	$n_{\rm jets}$	$p_{\mathrm{T}}^{\mathrm{jet}}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$	$m_{\rm eff}[GeV]$	$E_{\mathrm{T}}^{\mathrm{miss}}/\sum p_{\mathrm{T}}^{\ell}$	$\sum p_{\mathrm{T}}^{\ell} / \sum p_{\mathrm{T}}^{\mathrm{jet}}$	$n_{Z \to \ell^+ \ell^-}$	
RSSWZ-L			\geq 4	> 25	$> 0.2 imes m_{ m eff}$	-	-	< 0.2	0†	
RSSWZ-ML	>3	0	≥ 6	> 25	> 150	> 800	> 1.2	< 0.3	$\geq 1^{\dagger}$	
RSSWZ-MH	23		≥ 5	> 40	> 200	> 900	> 1.1	< 0.4	$\geq 1^{\dagger}$	
RSSWZ-H			≥ 5	> 40	> 250	> 1500	> 0.3	< 0.7	-	
: based on nu	based on number of SFOS pairs with $81 < m_{SFOS} < 101 GeV$									

Table: Signal regions of RPC SS 2-step WZ model

Background estimation validation

Dominant background: WZ+jets

	$n_{Sig}(\ell)$	n _{b-jets}	njets	$\rho_{\rm T}^{\rm jet}[{\rm GeV}]$	$m_{\rm eff}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]			
			oth	er requirem	ents				
VRWZ4j	3*	0	≥ 4	> 25	[600, 1500]	[30, 250]			
	E _T	m_{eff}	< 0.	2, 81 < n	$v_{ m SFOS} < 101$	GeV			
VRWZ6j	3*	0	≥ 6	> 25	[400, 1500]	[30, 250]			
	E_{T}^{mis}	$\frac{m_{\text{eff}}}{T} < 0.15, 81 < m_{\text{SFOS}} < 101 \text{GeV}$ $\geq 1 \geq 3 > 40 [600, 1500] [30, 250]$							
VRTTV	≥ 2	≥ 1	\geq 3	> 40	[600, 1500]	[30, 250]			
	> 30 0	GeV for	r the 1	wo leading	-same-sign l	eptons,			
	$\Delta R > 1.1$ between the leading-lepton and any jet,								
	$\sum i$	$\sum \rho_{T}^{b-\text{jet}} / \sum \rho_{T}^{\text{jet}} > 0.4, E_{T}^{\text{miss}} / m_{\text{eff}} > 0.1$							
VRTTV1b6j	≥ 2	≥ 1	≥ 6	> 40	< 1500	[30, 250]			
	> 30 0	GeV for	r the 1	wo leading	-same-sign l	eptons,			
			E_{T}^{m}	$m_{ m eff} < 1$	0.15				
VRTTW	$2^{*}(\mu^{\pm}\mu^{\pm})$	≥ 2	≥ 2	> 25	< 1500	[30, 250]			
	both I	eptons	with	> 25 GeV,	one with $>$	40GeV			
VRTTW3j	$2^{*} (e^{\pm} \mu^{\pm})$	≥ 2	\geq 3	> 25	< 1500	[30, 250]			
		bo	th lep	tons with 3	> 25 <i>GeV</i>				
*: additional	baseline lept	tons are	e not	allowed	-				

Table: Validation region definition

(e) Data and SM background comparison in CR and VRs

30 March 2023

Results

(f) Data and SM background in SRs

- No significant excess above the SM expectation is observed.
- We see small excesses in SRSSWZ-ML/MH/H. SRSSSlep-L is with the most significant excess, but still not reach to 3σ.

Results: systematic

The main systematic is from estimation of Fake/non-prompt lepton.

Interpretation

Exclusion limits on \tilde{g} - $\tilde{\chi}_1^0$ mass plane

30 March 2023

Interpretation

Exclusion limits on \tilde{q} - $\tilde{\chi}_1^0$ mass plane

30 March 2023

Summary

30 March 2023

Summary: \tilde{q}/\tilde{g} search in SS/3L

- No significant excess above the SM expectation is observed in all SRs.
- Lower limits on particle masses reach up to 2200 GeV for \tilde{g} and 1700 GeV for \tilde{q} at 95% CL.

ATLAS-CONF-2023-017

Summary: \tilde{q}/\tilde{g} search in ATLAS

More results will come out soon from Run3 data.

Thanks for your attention!

30 March 2023

Backup

Observed data and expected background contributions

	SRGGWZ-L	SRGGWZ-M	SRGGWZ-H	SRSSWZ-L	SRSSWZ-ML	SRSSWZ-MH	SRSSWZ-H
Observed	5	2	2	4	7	6	7
Total background	3.0 ± 0.7	3.5 ± 1.1	3.3 ± 0.6	5.2 ± 1.1	3.8 ± 0.8	3.9 ± 0.6	4.2 ± 0.7
$\begin{tabular}{c} \hline ZZ, W^{\pm} W^{\pm}, VVV \\ WZ \\ t\bar{t}W \\ t\bar{t}Z \\ t\bar{t}t\bar{t} \\ Other SM processes \\ Fake/non-prompt \\ Charge-flip \end{tabular}$	$\begin{array}{c} 0.09 \pm 0.05 \\ 1.7 \pm 0.5 \\ 0.15 \pm 0.09 \\ 0.24 \pm 0.08 \\ 0.02 \pm 0.01 \\ 0.26 \pm 0.17 \\ 0.56 \pm 0.29 \\ < 0.02 \end{array}$	$\begin{array}{c} 0.37 \pm 0.15 \\ 1.6 \pm 0.9 \\ 0.26 \pm 0.12 \\ 0.38 \pm 0.22 \\ 0.04 \pm 0.02 \\ 0.53 \pm 0.27 \\ 0.34 \pm 0.24 \\ 0.03 \pm 0.01 \end{array}$	$\begin{array}{c} 0.47 \pm 0.18 \\ 1.3 \pm 0.5 \\ 0.22 \pm 0.07 \\ 0.15 \pm 0.10 \\ < 0.02 \\ 0.28 \pm 0.15 \\ 0.85 \pm 0.29 \\ < 0.02 \end{array}$	$\begin{array}{c} 0.14 \pm 0.07 \\ 2.0 \pm 0.7 \\ 0.12 \pm 0.07 \\ 0.18 \pm 0.10 \\ < 0.02 \\ 0.36 \pm 0.20 \\ 2.4 \pm 0.8 \\ - \end{array}$	$\begin{array}{c} 0.09 \pm 0.05 \\ 3.1 \pm 0.7 \\ < 0.05 \\ 0.38 \pm 0.12 \\ < 0.02 \\ 0.28 \pm 0.15 \\ < 0.3 \\ - \end{array}$	$\begin{array}{c} 0.11 \pm 0.05 \\ 3.1 \pm 0.5 \\ < 0.05 \\ 0.38 \pm 0.11 \\ < 0.02 \\ 0.25 \pm 0.13 \\ < 0.3 \\ \end{array}$	$\begin{array}{c} 0.15 \pm 0.07 \\ 3.2 \pm 0.7 \\ 0.14 \pm 0.03 \\ 0.31 \pm 0.10 \\ < 0.02 \\ 0.12 \pm 0.07 \\ 0.24 \pm 0.16 \\ - \end{array}$

	SRGGSlep-L	SRGGSlep-M	SRGGSlep-H	SRSSSlep-L	SRSSSlep-ML	SRSSSlep-MH	SRSSSlep-H	SRSSSlep-H (loose)
Observed	2	5	0	9	3	6	0	10
Total background	2.9 ± 0.5	4.4 ± 0.8	3.0 ± 0.6	3.9 ± 0.8	3.6 ± 0.7	4.0 ± 0.6	0.99 ± 0.26	9.3 ± 1.9
WZ ZZ, W [±] W [±] , VVV tłW tłZ tłtł Other SM processes Fake/non-prompt Charge-flip	$\begin{array}{c} 1.39 \pm 0.32 \\ 0.14 \pm 0.08 \\ 0.15 \pm 0.08 \\ < 0.02 \\ 0.39 \pm 0.23 \\ 0.68 \pm 0.32 \\ \hline \end{array}$	$\begin{array}{c} 1.7 \pm 0.4 \\ 0.21 \pm 0.11 \\ 0.31 \pm 0.09 \\ 0.53 \pm 0.18 \\ 0.02 \pm 0.01 \\ 0.8 \pm 0.4 \\ - \end{array}$	$\begin{array}{c} 1.6 \pm 0.5 \\ 0.18 \pm 0.09 \\ 0.11 \pm 0.05 \\ 0.15 \pm 0.09 \\ 0.02 \pm 0.01 \\ 0.29 \pm 0.18 \\ 0.61 \pm 0.19 \\ \end{array}$	$\begin{array}{c} 1.7 \pm 0.5 \\ 0.13 \pm 0.07 \\ 0.14 \pm 0.08 \\ 0.23 \pm 0.14 \\ < 0.02 \\ 0.7 \pm 0.4 \\ 0.96 \pm 0.30 \\ - \end{array}$	$\begin{array}{c} 1.6 \pm 0.5 \\ 0.23 \pm 0.12 \\ 0.35 \pm 0.07 \\ 0.19 \pm 0.08 \\ < 0.02 \\ 0.44 \pm 0.25 \\ 0.7 \pm 0.4 \\ \end{array}$	$\begin{array}{c} 2.6 \pm 0.5 \\ 0.34 \pm 0.17 \\ 0.30 \pm 0.07 \\ 0.16 \pm 0.09 \\ < 0.02 \\ 0.17 \pm 0.09 \\ 0.46 \pm 0.33 \\ - \end{array}$	$\begin{array}{c} 0.71 \pm 0.20 \\ 0.04 \pm 0.02 \\ < 0.05 \\ 0.05 \pm 0.03 \\ < 0.02 \\ 0.02 \pm 0.03 \\ 0.14 \pm 0.14 \\ - \end{array}$	$\begin{array}{c} 5.5 \pm 1.3 \\ 0.7 \pm 0.4 \\ 0.55 \pm 0.29 \\ 0.36 \pm 0.22 \\ 0.02 \pm 0.01 \\ 0.34 \pm 0.18 \\ 1.9 \pm 1.3 \\ - \end{array}$

Distribution

CERN

30 March 2023

Interpretation: model-independent fit

SR	$\sigma_{\rm vis}[{\rm fb}]$	$S^{95}_{ m obs}$	$S_{ m exp}^{95}$	CL_b	p(s=0)(Z)
SRGGWZ-L	0.06	8.1	$5.2^{+2.2}_{-1.1}$	0.91	0.05 (1.64)
SRGGWZ-M	0.03	4.5	$5.2^{+2.1}_{-1.3}$	0.32	0.50 (0.00)
SRGGWZ-H	0.03	3.9	$5.0^{+2.0}_{-1.4}$	0.23	0.50 (0.00)
SRSSWZ-L	0.04	5.7	$6.1^{+2.3}_{-1.6}$	0.41	0.50 (0.00)
SRSSWZ-ML	0.07	10.4	$6.5^{+2.3}_{-1.5}$	0.94	0.02 (2.04)
SRSSWZ-MH	0.06	8.6	$5.3^{+2.0}_{-1.4}$	0.93	0.04 (1.74)
SRSSWZ-H	0.06	8.6	$5.4^{+2.5}_{-1.1}$	0.91	0.09 (1.32)
SRGGSlep-L	0.03	4.0	$4.7^{+2.0}_{-1.2}$	0.33	0.50 (0.00)
SRGGSlep-M	0.04	6.2	$5.8^{+2.2}_{-1.7}$	0.60	0.43 (0.17)
SRGGSlep-H	0.02	2.9	$4.7^{+2.0}_{-1.1}$	0.00	0.35 (0.39)
SRSSSlep-L	0.08	11.7	$5.6^{+2.4}_{-1.3}$	0.99	0.01 (2.33)
SRSSSlep-ML	0.03	4.8	$5.1^{+2.2}_{-1.3}$	0.43	0.50 (0.00)
SRSSSlep-MH	0.06	7.9	$5.4^{+2.3}_{-1.4}$	0.85	0.15 (1.06)
SRSSSlep-H	0.02	2.9	$3.5^{+1.3}_{-0.5}$	0.04	0.36 (0.35)
SRSSSIep-H (loose)	0.07	9.9	$8.1^{+3.3}_{-2.0}$	0.70	0.32 (0.46)

CR, VR systematic

(p) Relative uncertainties

Charge-flip background estimation

If one of the secondary electron tracks is subsequently preferred to the original track in the reconstruction of the electron candidate, the charge assigned to the electron might be incorrect.

$$\begin{array}{l} \xi_{\mathrm{Data}} = \xi_{\mathrm{True}} \times SF; \quad \left(SF = \frac{\xi_{\mathrm{Data}}}{\xi_{\mathrm{MC}}}\right) \\ \xi_{\mathrm{True}} = \frac{N_{\mathrm{GoodEleWrongQ}}}{N_{\mathrm{GoodEle}}} \end{array}$$

 ξ_{True} is measured in $t\bar{t}$ and Z+jets MC simulations. scale factors (SF) are released by the Egamma TP sub-group.

Fake/non-prompt lepton estimations

Non-prompt leptons arising from hadron decays or photon conversions, as well as hadrons misreconstructed as electrons.

$$\begin{pmatrix} n_{\text{signal}} \\ n_{\text{all}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \frac{1}{\varepsilon} & \frac{1}{\zeta} \end{pmatrix} \cdot \begin{pmatrix} n_{\text{signal, prompt}} \\ n_{\text{signal, F/NP}} \end{pmatrix}$$
(1)

 ε : probabilities for prompt leptons, calculated with simulated $t\bar{t}$ decays to leptons. ζ : probabilities fake/non-prompt leptons, measured in the range 10GeV< pt <75GeV in dedicated regions in data enriched predominantly in $t\bar{t}$ events with one or two prompt leptons and one F/NP lepton forming a same-sign pair.

