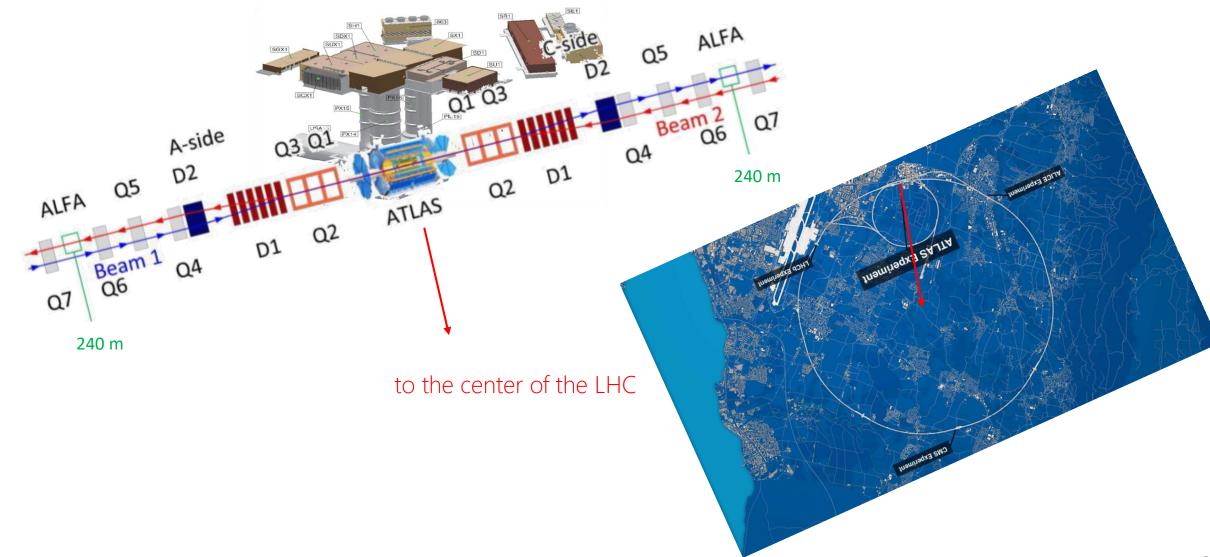
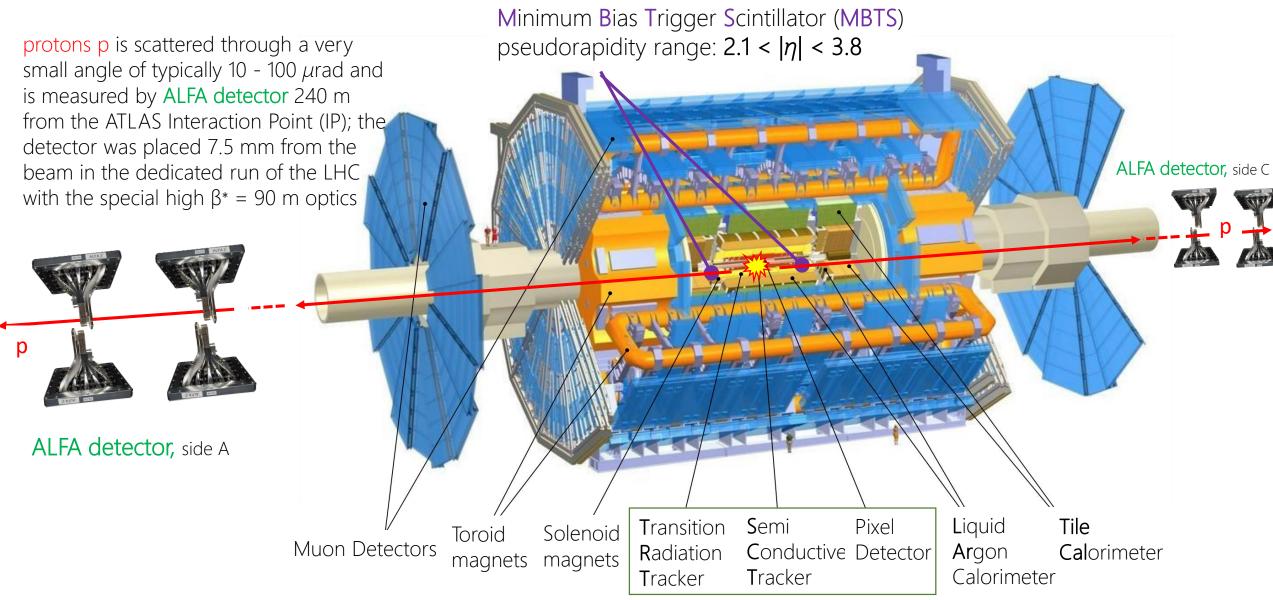
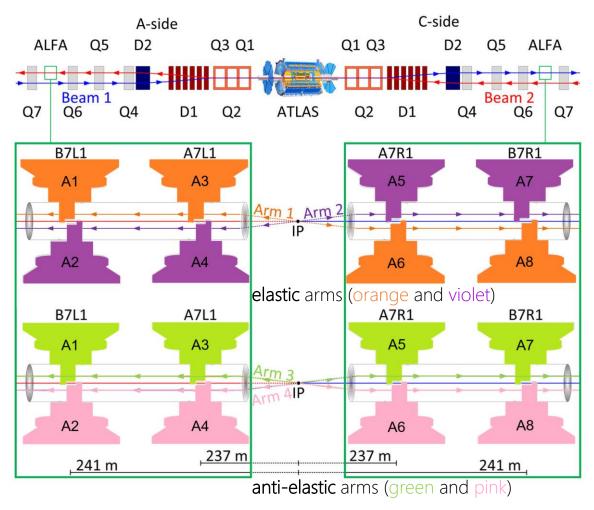
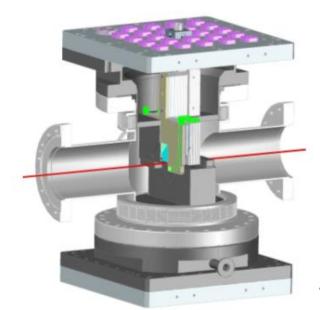
elastic and diffractive forward proton measurements with ATLAS using ALFA detector


Tomáš Sýkora Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics

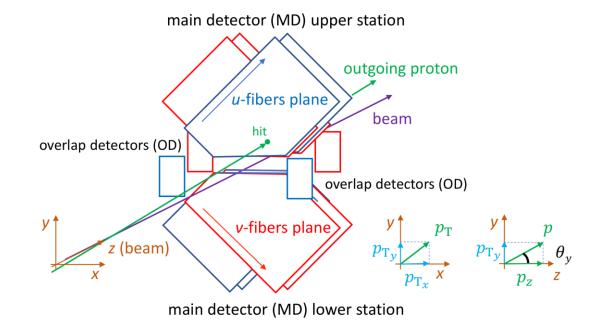
on behalf of the ATLAS collaboration




ALFA – forward detector

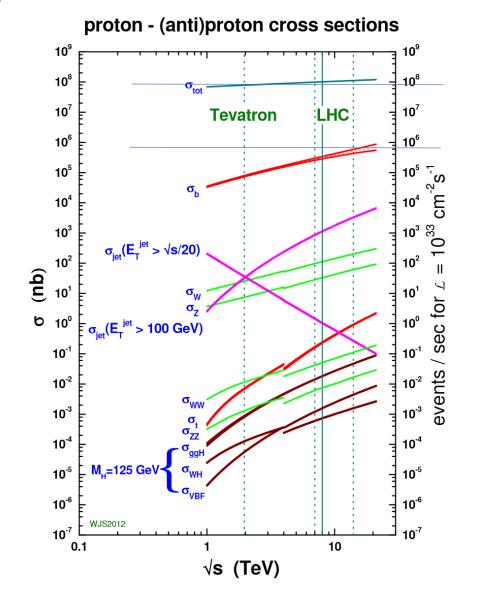

experimental setup

ALFA detector

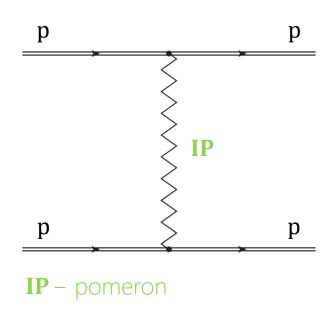


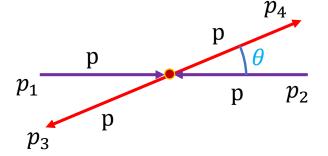
each of arms consists of 2 **armlets**, each with 2 detectors $arm_{ijkl} = Ai + Aj + Ak + Al$

ALFA detector (left in Roman Pot)



total cross section $\sigma_{\rm tot}$ of proton-proton interaction at \sqrt{s} = 13 TeV


arXiv:2207.12246 [hep-ex], accepted for publication in EPJC


total cross section σ_{tot} of proton-proton interaction

- $\sigma_{\rm tot}$ of p-p interaction is a fundamental quantity giving the upper bound on probability (cross section) of any process in p-p collisions
- $\sigma_{\rm tot}$ is not calculable in the framework of perturbative QCD; Regge model is used in HEP generators to describe kinematic area where perturbative QCD cannot be applied

measurement of $\sigma_{\rm el}$ – simplest process and kinematics

Mandelstam variables, invariants

$$s = (p_1 + p_2)^2$$

$$t = (p_1 - p_4)^2 \cong -(p_0 \theta)^2, |\vec{p_1}| = |\vec{p_2}| = |\vec{p_4}| = p_0$$

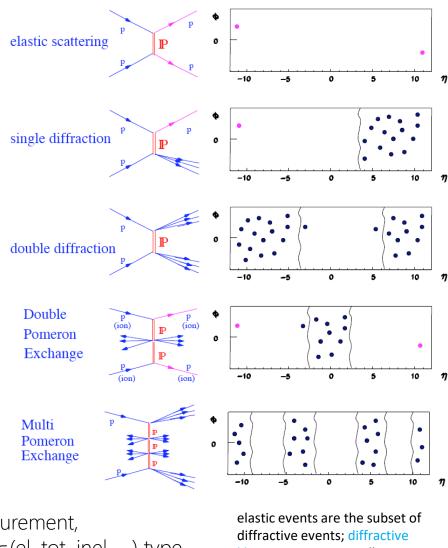
σ_{tot} and σ_{pl}

direct (ρ -independent; see below) measurement of $\sigma_{tot} = N_{tot}/L$, where N_{tot} is total number of events with interaction, L is luminosity, is nontrivial; (due to the limited acceptance, model dependence)

$$\sigma_{\text{tot}} = \sigma_{\text{el}} + \sigma_{\text{inel}}$$

$$\sigma_{\text{inel}} = \sigma_{\text{inel diffractive}} (\sigma_{\text{SD}} + \sigma_{\text{DD}} + ...) + \sigma_{\text{non diffractive}}$$

traditional way (ISR) of σ_{tot} measurement – via elastic cross section measurement and the use of optical theorem


$$\sigma_{\rm tot} = 4\pi \, {\rm Im}[f_{\rm el}(t=0)]$$

where $f_{\rm el}$ is elastic amplitude

$$\sigma_{\rm tot}^2 = \frac{16\pi}{1+\rho^2} \frac{1}{L} \left(\frac{dN_{\rm el}}{dt}\right)_{t=0} \quad \rho = \left.\frac{{\rm Re}[f_{\rm el}(t)]}{{\rm Im}[f_{\rm el}(t)]}\right|_{t\to 0} \quad {\rm luminosity\ dependent\ measurement,} \\ N_{\rm X} - {\rm number\ of\ events\ of\ X} \in ({\rm el,\ tot,\ inel,\ ...}) \ {\rm type}$$

$$\sigma_{\text{tot}} = \frac{16\pi}{1 + \rho^2} \frac{(dN_{\text{el}}/dt)_{t=0}}{N_{\text{tot}}}$$

luminosity independent measurement

like pattern was actually observed in elastic collisions

differential elastic cross section – fit (illustration)

Coulomb Nuclear Interference (CNI) region

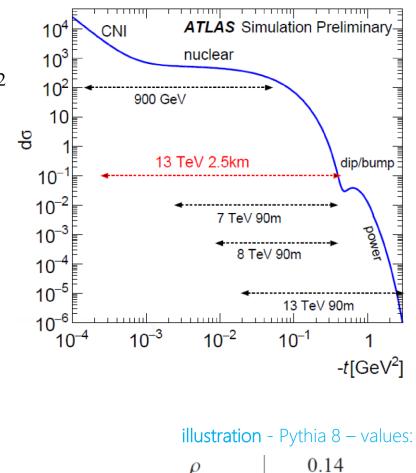
ATLAS ALFA method

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| f_{\mathrm{N}}(t) + f_{\mathrm{C}}(t) \mathrm{e}^{\mathrm{i}\alpha\phi(t)} \right|^{2}$$

coulomb amplitude

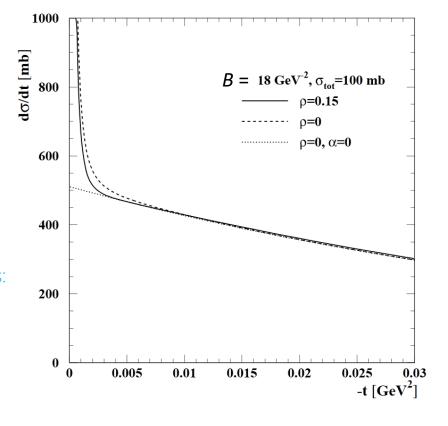
$$f_{\rm C}(t) = -8\pi\alpha\hbar c \frac{G^2(t)}{|t|}$$

nuclear amplitude

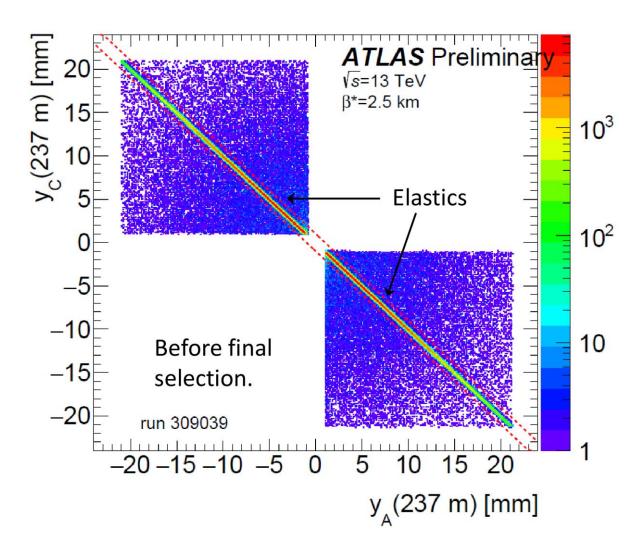

$$f_{\rm N}(t) = (\rho + i) \frac{\sigma_{\rm tot}}{\hbar c} e^{\frac{-B|t|}{2}}$$

phase

$$\phi(t) = -\ln \frac{B|t|}{2} - \phi_{\rm C}$$


proton form factor

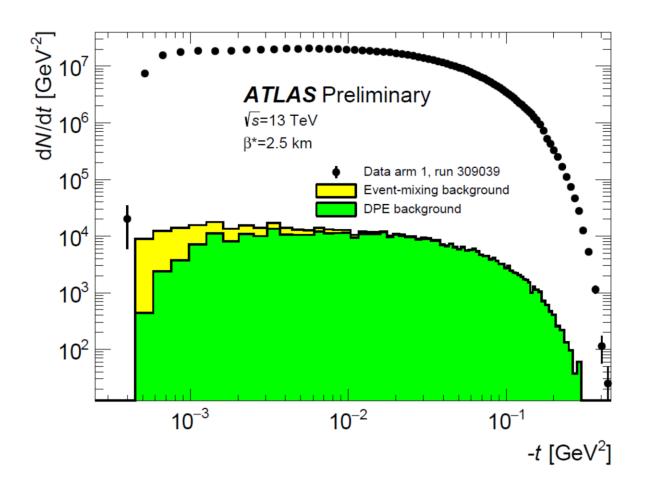
$$G(t) = \left(\frac{\Lambda}{\Lambda + |t|}\right)^2$$



 $\begin{array}{c|c}
\rho & 0.14 \\
\Lambda & 0.71 \text{ GeV}^2 \\
\phi_C & 0.577
\end{array}$

for an illustration, from ATLAS ALFA TDR, CERN/LHCC 2008-04

data – selection of elastic events


elastic scattering data were taken in 2016 at energy \sqrt{s} =13 TeV with β^* = 2.5 km and

Roman Pot insertion to 3.5σ recording 6.8 M events for integrated luminosity 340 nb⁻¹

the selection of elastic events is based on a pre-selection of data-quality and geometrical acceptance cuts

the final selection exploits the back-to-back topology of elastic events

data – background

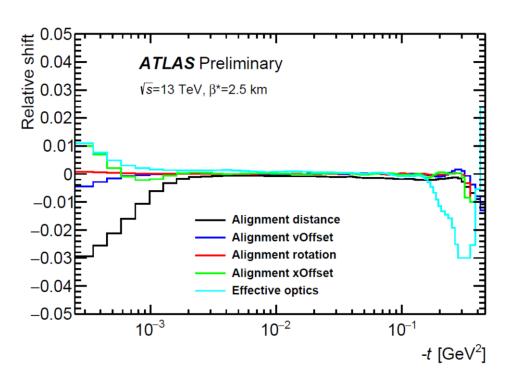
two sources of background are considered:

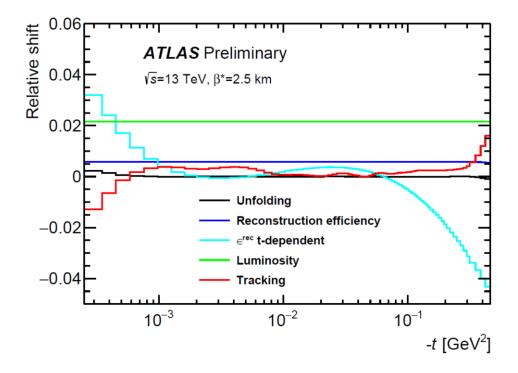
- 1. accidental halo+halo and halo+single diffraction coincidences
- 2. Double-Pomeron exchange (DPE)

accidental coincidence are determined from single-side templates, DPE from simulation

both backgrounds are normalized to control regions in the data

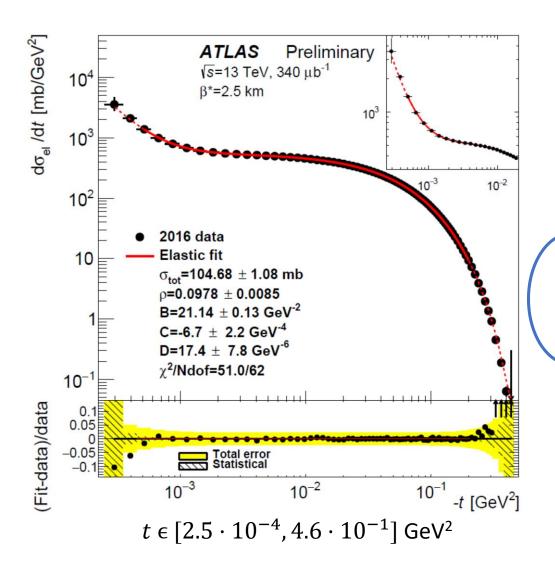
the irreducible background fraction is very small: 0.75‰, with a relative uncertainty of 10-15%


systematic uncertainties for $d\sigma_{el}/dt$


$$\frac{d\sigma}{dt_i} = \frac{1}{\Delta t_i} \times \frac{\mathcal{M}^{-1}[N_i - B_i]}{A_i \times \epsilon^{\text{reco}} \times \epsilon^{\text{trig}} \times \epsilon^{\text{DAQ}} \times L_{\text{int}}}$$

 A_i – acceptance in i-th bin, \mathcal{M}^{-1} – unfolding

 $\epsilon^{\rm X}$ – efficiency in X; N_i , B_i – number of signal, background events


experimental systematic uncertainties calculated as function of t

main uncertainties: alignment, luminosity, reconstruction efficiency

differential elastic cross section – results

physics parameters are extracted from a profile fit to the cross section including experimental systematic uncertainties

fit function – nuclear part depends on considered models (next slide)

$$f_{N}(t) = (\rho + i) \frac{\sigma_{tot}}{\hbar c} e^{\frac{-B|t|}{2}}$$

$$\phi(t) = -\ln \frac{B|t|}{2} - \phi_{C}$$

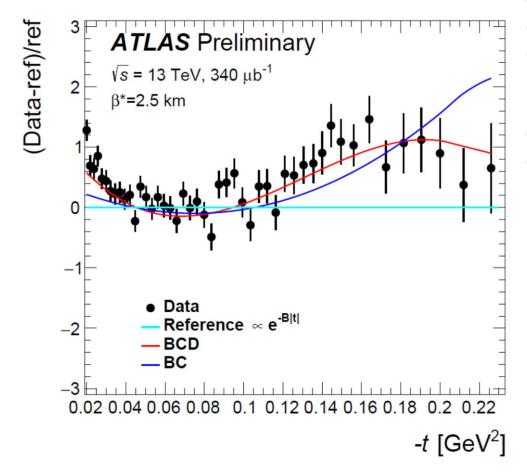
$$f_{N}(t) = (\rho + i) \frac{\sigma_{tot}}{\hbar c} e^{\frac{-B|t| - Ct^{2} - D|t|^{3}}{2}}$$

$$\sigma_{tot} = \frac{105 \text{ mb}}{B}$$

$$\frac{21.13 \text{ GeV}^{-2}}{-6.5 \text{ GeV}^{-4}}$$

$$\frac{\rho}{17.4 \text{ GeV}^{-6}}$$

$$\frac{\rho}{\phi_{C}}$$


$$\frac{0.096}{0.577}$$

$$\phi(t) = -\left(\gamma_{E} + \ln \frac{B|t|}{2} + \ln\left(1 + \frac{8}{B\Lambda}\right)\right) + \frac{4|t|}{\Lambda} \cdot \ln \frac{\Lambda}{4|t|} - \frac{2|t|}{\Lambda}$$

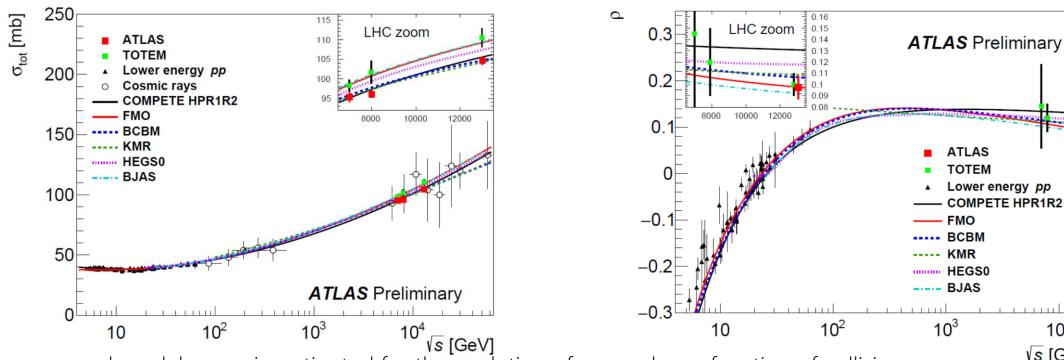
the main uncertainties are related to the luminosity and to the alignment;

for ρ also theoretical uncertainties are important

theoretical (model) uncertainties

$$f_{\rm N}(t) = (\rho + i) \frac{\sigma_{\rm tot}}{\hbar c} e^{\frac{-B|t| - Ct^2 - D|t|^3}{2}}$$

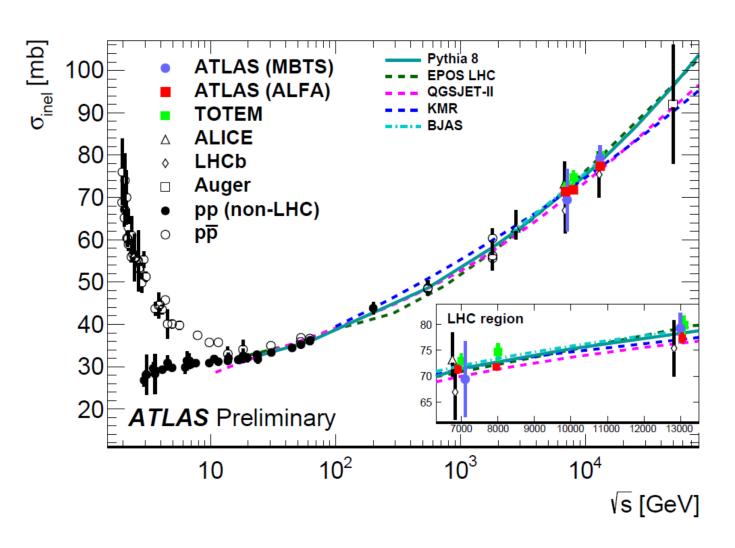
	$\sigma_{ m tot}[{ m mb}]$	ρ	$B[\text{ GeV}^{-2}]$	$C[\text{GeV}^{-4}]$	$D[\text{GeV}^{-6}]$
Central value	104.68	0.0978	21.14	-6.7	17.4
Statistical error	0.22	0.0043	0.07	1.1	3.8
Experimental error	1.06	0.0073	0.11	1.9	6.8
Theoretical error	0.12	0.0064	0.01	0.04	0.15
Total error	1.09	0.0106	0.13	2.3	7.8


theoretical uncertainties:

- parametrization of the strong amplitude
- Coulomb phase
- proton form factor
- nuclear phase important for ρ

stability:

- time dependence
- fit range
- different *t*-reconstruction methods
- difference between arms


behavior of σ_{tot} and ρ as function of collision energy

- √s [GeV] several models were investigated for the evolution of σ_{tot} and ρ as function of collision energy; σ_{tot} and ρ connected via dispersion relations
- the canonical evolution model, COMPETE, is disfavored as it predicts the value of $\rho \approx 0.13$
- the model with an Odderon and tuned to TOTEM data is not in a good agreement with corresponding ATLAS $\sigma_{\rm tot}$ result
- the damped amplitude model is in the best agreement with ATLAS data
- ALFA and TOTEM difference in σ_{tot} about 2.2 σ (similar trend seen at 7 and 8 TeV)

 10^{4}

elastic and inelastic cross sections at \sqrt{s} = 13 TeV

after the differential elastic cross section over the full phase space is got (by integrating the nuclear part of the theoretical prediction we get

$$\sigma_{\rm el}^{\rm extr} = 27.27 \pm 1.10 \,({\rm exp.}) \pm 0.30 \,({\rm th.}) \,{\rm mb}$$

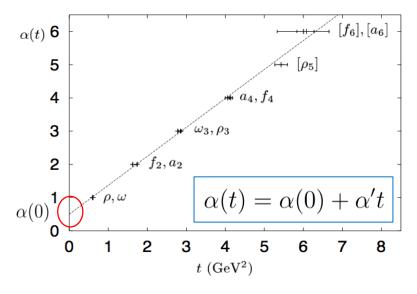
then, since we get

$$\sigma_{\rm inel} = \sigma_{\rm tot} - \sigma_{\rm el}$$

we get

$$\sigma_{\text{inel}} = 77.41 \pm 1.07 \text{ (exp.)} \pm 0.18 \text{ (th.)} \text{ mb}$$

evolution of B; σ_{el}/σ_{tot} ratio

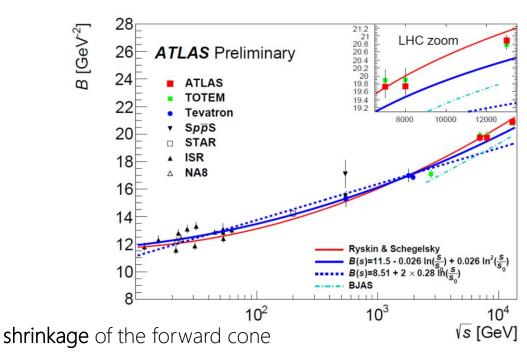

using optical theorem and Regge theory we can write

$$\sigma_{\rm tot} \approx s^{\alpha(0)-1}$$

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}}{\mathrm{d}t} \approx s^{2(\alpha(0)-1)} e^{-B|t|}$$

$$B = B_0 + 2\alpha' \ln s$$

where $\alpha(0)$ is so-called intercept of a Regge trajectory

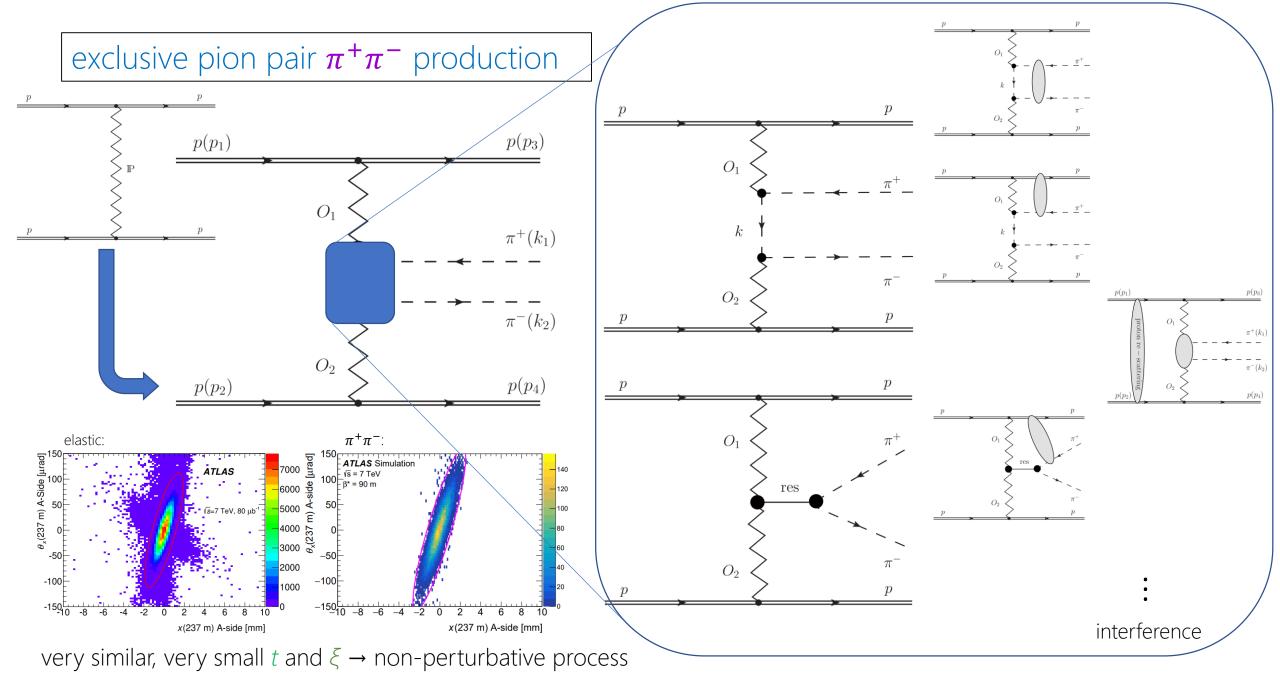

then:

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} \approx s^{\alpha(0)-1}/(B_0 + \alpha' \ln s^2)$$

measurement at \sqrt{s} = 13 TeV gives:

$$\frac{\sigma_{\rm el}}{\sigma_{\rm tot}} = 0.257 \pm 0.008 \text{ (exp.)} \pm 0.009 \text{ (th.)}$$

for some recent discussion see e.g. Soft Pomeron in light of the LHC correlated data



0.28
0.28
0.26
0.24
0.22
0.18
h.) 0.16
0.14
el. ref. = 12.7 - 1.75 ln(s) + 0.137 ln²(s)

10³
10⁴
Vs [GeV]

exclusive pion pair production at $\sqrt{s} = 7 \text{ TeV}$

arXiv:2212.00664 [hep-ex], accepted for publication in EPJC

data selection and cut flow

- data samples, the same as for ATLAS Collaboration, Measurement of the total cross section from elastic scattering in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Nucl. Phys. B 889 (2014) 486, arXiv: 1408.5778 [hep-ex]
- the present analysis used also the same proton reconstruction criteria bunch group, data quality, selections on the reconstructed track and geometrical deflection, beam-screen and edge conditions (see Table 2) together with the detector alignment

Selection

Bunch selection

Lumi blocks selection

Trigger configuration

Pions:

number of tracks

primary vertex

ID track quality

MBTS veto

Protons:

ALFA track quality

ALFA uv-condition

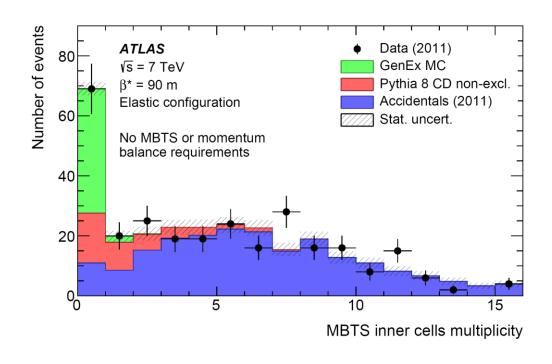
ALFA clean track

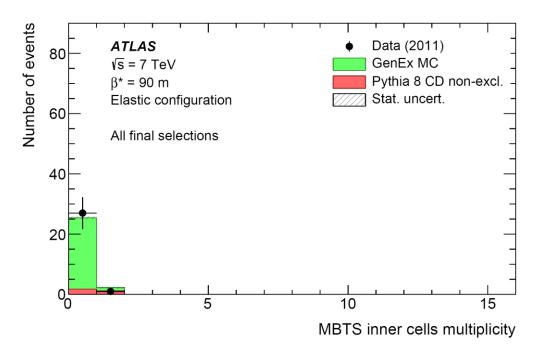
ALFA geometry condition

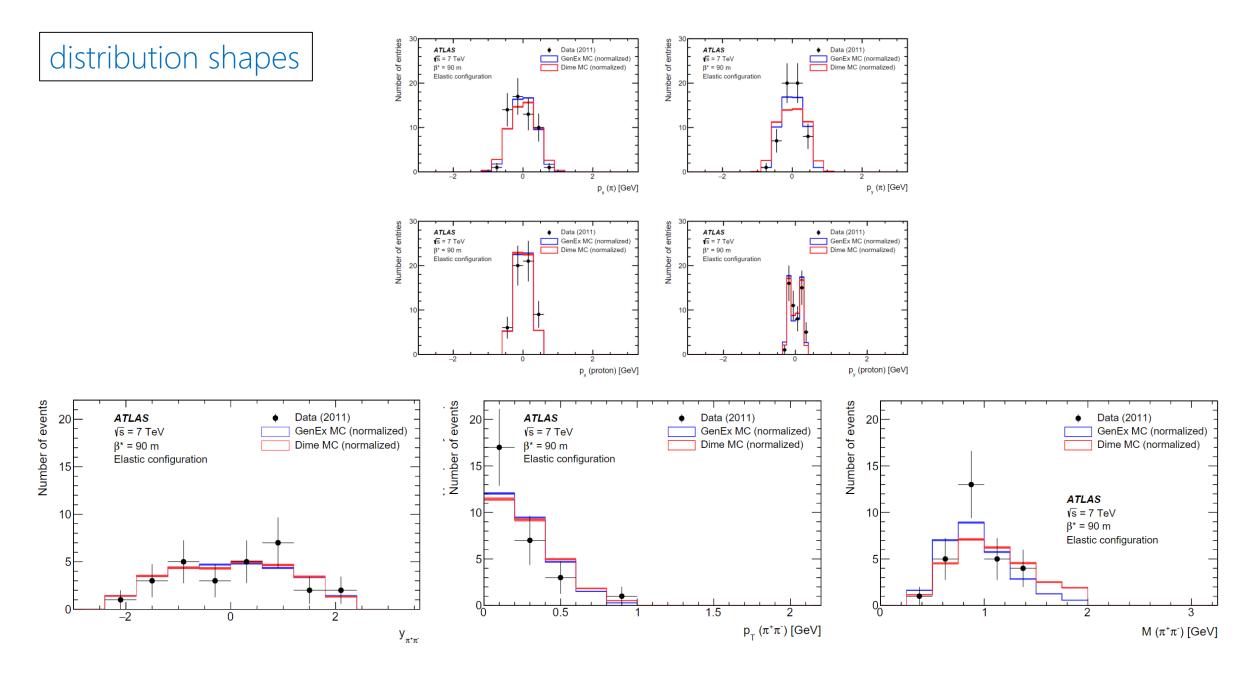
Full system momentum balance in p_x and p_y

Fiducial region

fiducial region:


 $ijkl \in \{1368, 2457, 1357, 2468\}$


$$|\eta(\pi)| < 2.5, \ p_{\mathrm{T}}(\pi) > 0.1 \text{ GeV}, \ 2m_{\pi} < m_{\pi\pi} < 2.0 \text{ GeV}$$


$$\operatorname{armlet}_{ij}^{\mathrm{low_cut}} < p_{\mathrm{y}}(\mathrm{A}) < \operatorname{armlet}_{ij}^{\mathrm{up_cut}} \quad \text{and} \quad \operatorname{armlet}_{kl}^{\mathrm{low_cut}} < p_{\mathrm{y}}(\mathrm{C}) < \operatorname{armlet}_{kl}^{\mathrm{up_cut}}$$

Selection	Configuration	
	elastic	anti-elastic
Recorded ATLAS events	6 620 953	
Data quality and trigger preselections	1 106 855	397 683
ID selection (pion pair)	1 520	1 115
ALFA track selection (incl. clean track and <i>uv</i> -condition)	486	11
MBTS veto	136	5
ALFA geometry condition	96	5
Full system momentum balance in x and y	30	3
Fiducial region	28	3
(arm 0 + arm 1) Total selected	(18+10) 28	(2+1) 3

Generators and background estimation

systematic uncertainties and results

	Uncertainty [%]	
Source of uncertainty	elastic	anti-elastic
Trigger efficiency ϵ_{trig}	±0.1	±0.3
Background determination	±3.5	±3.5
Signal and background corrections:		
Beam energy	±0.1	±0.1
ID material	+4.8	+4.1
Veto on MBTS signal	±1.3	±2.0
ALFA single-track selection	±0.9	±0.9
ALFA reconstruction efficiency	±0.9	±0.8
ALFA geometry selection	±0.5	±0.5
Optics	±1.1	±1.0
Overall systematic uncertainty	+6.4 -4.2	+6.0 -4.4
Statistical uncertainty	±21.2	±61.6
Theoretical modelling	±2.8	±8.0
Luminosity	±1.2	±1.2

$$\sigma_{\pi^{+}\pi^{-}}^{\text{vis, conf}} = \frac{1}{L} \times \left[\left(N_{0}^{\text{conf}} - B_{0}^{\text{conf}} \right) \times C_{0}^{\text{conf}} + \left(N_{1}^{\text{conf}} - B_{1}^{\text{conf}} \right) \times C_{1}^{\text{conf}} \right] \times \frac{1}{\epsilon_{\text{trig}}^{\text{conf}} \cdot \epsilon_{\text{DAQ}}}$$

the meaning of parameters is similar to the case of the total cross section measurement except of the correction factor C^{conf}_{i} , which covers uv-condition and single track selection

Exclusive $\pi^+\pi^-$ cross-section [µb]				
Elastic configuration				
Measurement	$4.8 \pm 1.0 \text{ (stat)} ^{+0.3}_{-0.2} \text{ (syst)} \pm 0.1 \text{ (lumi)} \pm 0.1 \text{ (model)}$			
GenEx \times 0.22 (absorptive correction)	1.5			
Dime	1.6			
Anti-elastic configuration				
measurement	$9 \pm 6 \text{ (stat)}^{+1}_{-1} \text{ (syst)} \pm 1 \text{ (lumi)} \pm 1 \text{ (model)}$			
GenEx \times 0.22 (absorptive correction)	2			
Dime	3			

the results may be compared with cross-sections provided by MC generators using the same fiducial region definition but due to the lack of statistics no conclusion can be made

conclusion

A. total cross section via optical theorem

```
• \sigma_{\text{tot}}(pp \to X) = 104.68 \pm 1.08 \text{ (exp.)} \pm 0.12 \text{ (th.) mb,}

\rho = 0.0978 \pm 0.0085 \text{ (exp.)} \pm 0.0064 \text{ (th.),}

B = 21.14 \pm 0.13 \text{ GeV}^{-2},

C = -6.7 \pm 2.2 \text{ GeV}^{-4},

D = 17.4 \pm 7.8 \text{ GeV}^{-6}.
```

- the low value of ρ and our measurement of $\sigma_{\rm tot}$ are in tension with the standard evolution models like COMPETE
- measurements of σ_{tot} are systematically lower than the results from TOTEM (5.9 mb, 2.2 σ at 13 TeV); the difference is mostly in the normalization
- B. visible exclusive pion pair production, $pp \to pp\pi^+\pi$
 - $\sigma_{\text{elastic}}^{\text{visible}}(pp \to pp\pi^{+}\pi)$ = $4.8 \pm 1.0 \text{ (stat)} ^{+0.3}_{-0.2} \text{ (syst)} \pm 0.1 \text{ (lumi)} \pm 0.1 \text{ (model)}$
 - $\sigma_{\text{anti-elastic}}^{\text{visible}}(pp \to pp\pi^+\pi) = 9 \pm 6 \text{ (stat)}_{-1}^{+1} \text{ (syst)} \pm 1 \text{ (lumi)} \pm 1 \text{ (model)}$
 - the first observation at the LHC with the forward proton, ALFA detector based, tag...

for (some/other) related additional experimental and theoretical considerations see the talk of Rafal Staszewski

ALFA detector: for (some) experimental details see the <u>talk of Peter Bussey</u>

backup

models

Model	global χ^2/Ndof	ALFA	TOTEM	LHC data included
		partial $\chi^2/Ndof$	partial $\chi^2/Ndof$	in model tuning
COMPETE HPR1R2	1.42	3.00	3.50	A 7; T 7, 8
FMO	1.61	9.50	0.13	T 7, 8, 13
BCBM	1.03	0.81	2.04	all
KMR		0.85	2.29	A 7, 8; T 7, 8, 13
HEGS		8.10	0.83	A 7; T 7, 8
BJAS		11.90	0.29	A 7; T 7, 8, 13

the best agreement with ALFA data observed for the BCBM model (damped amplitude) and the KMR model main messages:

- 1. "standard" evolution model like COMPETE is not able to describe simultaneously $\sigma_{
 m tot}$ and ho
- 2. new effects in the evolution are observed, if these are induced by the Odderon or a flatter energy evolution of σ_{tot} will need to be studied further
- 3. the situation complicated by the $\sigma_{\rm tot}$ discrepancy between ALFA and TOTEM

models II

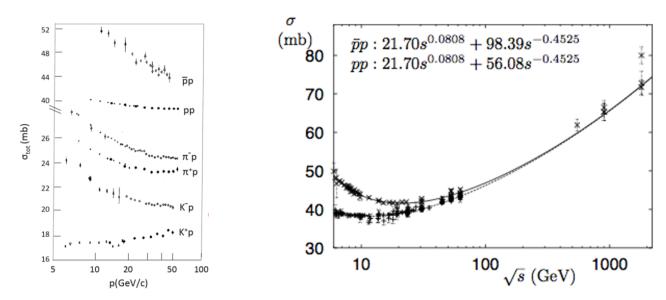
COMPETE Collaboration, J. R. Cudell et al., *Benchmarks for the Forward Observables at RHIC, the Tevatron Run II and the LHC*, Phys. Rev. Lett. 89 (2002) 201801, arXiv: hep-ph/0206172 [hep-ph]

M. M. Block and R. N. Cahn, Forward Hadronic pp and $p\bar{p}$ Elastic Scattering Amplitudes: Analysis of Existing Data and Extrapolations to Collider Energies, Phys. Lett. B 120 (1983) 224

C. Bourrely and A. Martin, *Theoretical predictions for pp and p anti-p elastic scattering in the TeV energy domain*, CERN - ECFA Workshop on Feasibility of Hadron Colliders in the LEP Tunnel, 1984, url: https://cds.cern.ch/record/153114

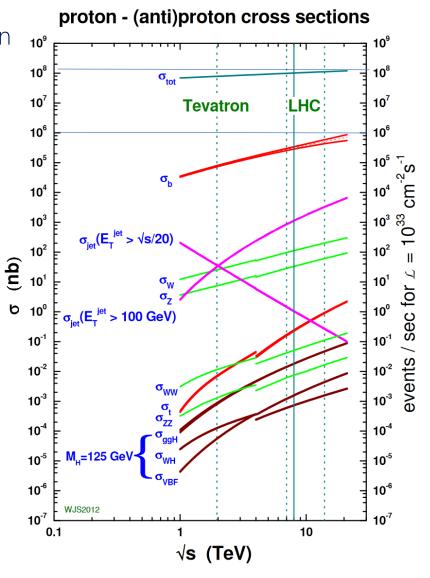
E. Martynov and B. Nicolescu, *Did TOTEM experiment discover the Odderon?*, Phys. Lett. B 778 (2018) 414, arXiv: 1711.03288 [hep-ph]

V. A. Khoze, A. D. Martin and M. G. Ryskin, *Elastic and diffractive scattering at the LHC*, Phys. Lett. B 784 (2018) 192, arXiv: 1806.05970 [hep-ph]

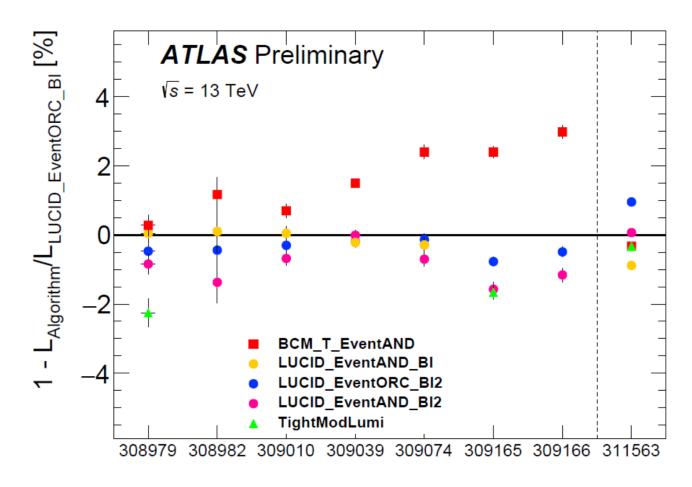

O. V. Selyugin, Nucleon structure and the high energy interactions, Phys. Rev. D 91 (2015) 113003, arXiv: 1505.02426 [hep-ph]

W. Broniowski, L. Jenkovszky, E. Ruiz Arriola and I. Szanyi, Hollowness in pp and $p\bar{p}$ -scattering in a Regge model, Phys. Rev. D 98 (2018) 074012, arXiv: 1806.04756 [hep-ph]

total cross section σ_{tot} of proton-proton interaction


 $\sigma_{\rm tot}$ of p-p interaction is a fundamental quantity giving the upper bound on probability (cross section) of any process in p-p collisions

• 1973 – Intersection Storage Rings (ISR): **rising of** σ_{tot} **value**



measurement of σ_{tot} at LHC energies – TOTEM and ALFA

at higher energies (57 TeV) – cosmic showers, Auger experiment

luminosity

Run number

a dedicated analysis of the luminosity for this special low-µ run was performed

the main uncertainty is derived from the stability of different algorithms with respect to the nominal algorithm from ATLAS detector LUCID

- calibration transfer, long-term stability and background uncertainty: 1.85%
- vdM calibration uncertainty: 1.1%
- total uncertainty: 2.15%

$$L_{\text{int}} = 339.9 \pm 0.1 \text{ (stat.)} \pm 7.3 \text{ (syst.)} \,\mu\text{b}^{-1}$$