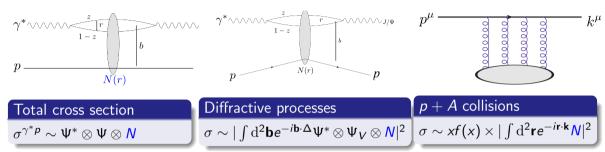


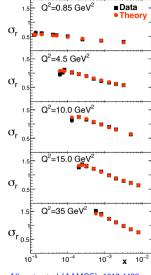
Proton structure functions at NLO in the dipole picture with massive quarks

Heikki Mäntysaari Based on arXiv:2211.03504 with <u>Hänninen</u>, Paatelainen, <u>Penttala</u>

> University of Jyväskylä, Department of Physics Centre of Excellence in Quark Matter Finland


March 28, 2023 - DIS 2023

Heikki Mäntysaari (JYU) CGC NLO DIS 28.3.2023 1/10


Probing high density gluonic matter: CGC and dipole picture (LO)

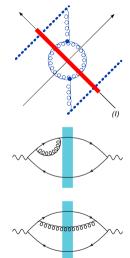
- ullet Dipole picture at high energy: $\gamma^* o qar q$ fluctuation has a long lifetime \Rightarrow factorization
- ullet Dipole amplitude N: eikonal propagation in the color field, resumming multiple scattering
 - Convenient degree of freedom at small-x
 - Center-of-mass energy dependence perturbative: BK/JIMWLK
 - Necessary input for all CGC calculations: non-perturbative initial condition

Heikki Mäntysaari (JYU) CGC NLO DIS 28.3.2023 1/10

State-of-the-art at LO

Many works at LO

(note power counting: $lpha_{
m s} \ln 1/x \sim 1$, so actually LL)


- Parametrization for the dipole amplitude at x=0.01+ BK evolution with running α_s
- AAMS 0902.1112: F₂ from H1&ZEUS
- ullet AAMQS 1012.4408: combined precise σ_r data
 - Charm data requires an additional normalization factor
- H.M, Lappi, 1309.6963: different parametrizations, applications to p+A

Status at LO

- $\chi^2/N \sim 1$
- Can not simultaneously describe total and charm data

Albacete et al (AAMQS), 1012.4408

Progress towards NLO

Full NLO accuracy ($\sim \alpha_{\rm s}^2 \ln 1/x$) requires

- Evolution equation
 - NLO BK: Balitsky, Chirilli, 0710.4330
 - Resummation of transverse logs: lancu, et al, 1502.05642, 1507.03651
 - Numerical solution: Lappi, H.M, 1601.06598
- Impact factor (γ^* wave function at NLO)
 - $m_q = 0$: Hänninen, Lappi, Paatelainen, 1711.08207; Beuf 1708.06557
 - With heavy quarks (mass renormalization in LCPT):
 Beuf, Lappi, Paatelainen 2103.14549 2112.03158, 2204.02486
 - Numerical implementation:
 <u>Hänninen</u>, H.M, Paatelainen, <u>Penttala</u>, 2211.03504
- Also many other processes, talks by Dumitru, Tawabutr, Mulian, Penttala, Salazar, Hänninen, . . .

Resumming higher order contributions in the evolution equation

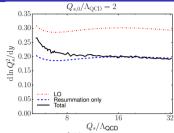
NLO BK numerically heavy, here different resummation schemes, drop α_s^2 w/o transverse logs Resummation needed to render NLO BK stable Lappi, H.M, 1601.06598

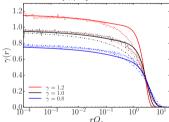
ResumBK

- Single and double transverse logs
- Resummation tuned to approximate NLO BK

Lappi, H.M, 1601.06598

• lancu et al, 1502.05642, 1507.03651


KCBK


- Kinematical constraint (life time ordering for emitted gluons)
- Same physics as double log resummation
- Beuf, 1401.0313

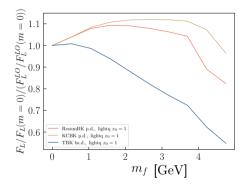
TBK

- Evolution in target (not projectile!) rapidity
- Impact factor in projectile rapidity, need to shift
- Ducloue et al, 1902.06637
- Differences quantify the resummation scheme dependence
- Dropped α_s^2 terms have only a small effect in fits Hänninen, 2112.08818

What happens at NLO: evolution

Solid: IC, dashed: evolved

Lappi, H.M, 1601.06598


BK evolution at NLO (ResumBK, KCBK)

- Slower evolution speed
- Anomalous dimension γ ($N\sim (r^2Q_s^2)^\gamma$) approx. constant Compare to LO: $\gamma\to 0.6\dots 0.8$
- \bullet Slower evolution speed good: LO fits need smallish α_s
- Anom. dimension affects virtuality and mass dependence: suppresses high Q^2 and m_q^2 : $\sigma^{\gamma^*p} \sim |\Psi_{\gamma}|^2 N(r^2 = 1/\mu^2) \sim |\Psi_{\gamma}|^2 \mu^{-2\gamma}, \ \mu^2 = \mu^2(Q^2, m_q^2)$
- Ducloue et al, 1912.09196: (approximative) NLO evolution +
 LO impact factor not enough to describe total + charm data

TBK more complicated:

develops $\gamma < 1$ (enhances heavy quark production), but also need a shift to projectile rapidity

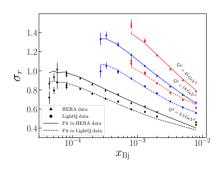
What happens at NLO: impact factor

NLO vs LO impact factor

- > 1: enhances heavy q production
- < 1: suppresses heavy q production (TBK-evolved dipole)

NLO photon wave function

- NLO impact factor enhances heavy quark production compared to LO
- Opposite effect than from the evolution


With TBK evolved dipole different:

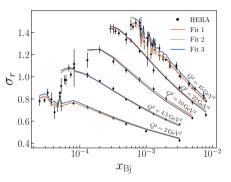
- Impact factor suppresses heavy quarks,
- Again opposite effect than from evolution

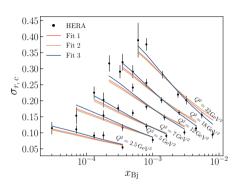
Quantitative question if m_q and x, Q^2 dependence is compatible with HERA at full NLO?

Heikki Mäntysaari (JYU) CGC NLO DIS 28.3.2023 6/10

Fit initial condition to HERA data

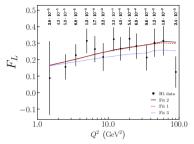
Beuf, Hänninen, Lappi, H.M., 2007.01645

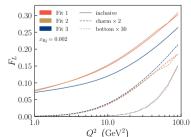

Goal


 Global analysis, fit simultaneously total and charm&bottom data

Here

- Use $m_q = 0$ fits from Beuf et al, 2007.01645
 - Fitted light quark pseudodata: interpolated c and b subtracted form total σ_r
 - In total 12 different fits (different running coupling prescription, resummation scheme, . . .)
- Compute predictions for c and b production


Comparison to world data



- 3/12 fits: successful predictions, $\chi_c^2/N <$ 2.5 using optimal $1.1\,{
 m GeV} < m_c < 1.6\,{
 m GeV}$
- Also b data well described with these 3 fits
- Obtain $\chi^2/N = 1...2$: excellent description of all small-x DIS data
- Additional constraints as charm probes dipole amplitude at much shorter length scales

Heikki Mäntysaari (JYU) CGC NLO DIS 28.3.2023 8/10

- No F_L data included in fits
- \bullet All 3 determined fits compatible with the F_L data
- More precise data from the EIC can provide further constraints
- F_L is different from $F_2 \approx \sigma_r$, as no aligned jet contribution from large dipoles

- First CGC description of all (total+charm) HERA small-x structure function data
- Successfully predict heavy quark production data at full NLO accuracy
- Charm provides strong additional constraints for the initial condition of the BK evolution
- Having both (approximative) NLO evolution and NLO impact factor is crucial
- Demonstrated feasibility of global analyses
- The determined 3 fits should be used in all NLO CGC phenomenology
 - Deviations rough estimate for initial condition uncertainty
- Outlook/in progress: Bayesian inference including total and heavy quark data

#	Resum.	$lpha_{ m s}$	$Y_{0,\mathrm{BK}}$	m_c	$\chi_{ m c}^2/{\it N}$	m_b	$\chi_{ m b}^2/{\it N}$	$\left \; \chi^2_{ m tot} / {\it N} \; ight $	
	scheme			[GeV]		[GeV]			
1	ResumBK	PD	0	1.42	1.86	4.83	1.37	1.25	
2	KCBK	PD	0	1.49	2.55	4.96	1.58	1.23	
3	TBK	BSD	0	1.29	1.02	5.04	1.12	1.83	