



### **Observation of strong nuclear suppression in exclusive** J/ψ photoproduction in Au+Au UPCs at RHIC



(a) Coherent with nucleus stays intact

(b) Incoherent with elastic nucleon

(c) Incoherent with nucleon dissociative



### **Motivation**

- Physics mechanism of modified parton densities in heavy nuclei one of the most pressing questions in both hot and cold QCD community.
- Photoproduction of Vector Mesons,
   e.g., J/ψ, is considered a clean probe to the nuclear parton structures.





### $J/\psi$ photoproduction



| Coherent<br>(target stays intact)                                                                                 | Incoherent<br>(target breaks up)           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|
| Average nuclear parton density                                                                                    | Event-by-event parton density fluctuations |  |  |  |
| Momentum transfer ( <i>t</i> ) and transverse spatial position ( <i>b</i> ) are Fourier transforms of each other; |                                            |  |  |  |
| See Z. Tu's talk for gluon spatial distribution at ePIC <i>Mar 30, 2023, 12:10 PM</i> .                           |                                            |  |  |  |

What can the **coherent** and **incoherent**  $J/\psi$  photoproduction at x ~ 0.01 tell us?



### **Ultra-Peripheral Collisions at RHIC**



A versatile program with different species, energy, and polarization.



### **STAR experiment**



### **Relevant central detectors**

Time Projection Chamber (TPC)

Time-Of-Flight detector (TOF)

Barrel EM Calorimeter (BEMC)

Since 2022, STAR has forward detectors (2.5 <  $\eta$  < 4.0), which would be crucial to the RHIC Run 23-25 physics program



### Measuring J/ $\psi$ in 200 GeV Au+Au UPCs



Data analysis:

J/ $\psi$  → e<sup>+</sup>e<sup>-</sup> (|y| < 1.0 for J/ $\psi$ , electrons within |η|<1.0)

# **STAR PID (e.g., TPC, TOF) capability** ensures high purity of electron candidates.

Different templates from STARLight and H1 *ep* data are used to describe the signal and backgrounds.



### Measuring J/ $\psi$ in 200 GeV Au+Au UPCs



when  $Q^2 \sim 0$ ,  $p_T$  of J/ $\psi$  is directly related to momentum transfer ( $t \sim p_T^2$ )



### Separating coherent and incoherent $J/\psi$



- Low momentum transfer (p<sub>T</sub><sup>2</sup>) is dominated by **coherent** photoproduction.
- For incoherent production at low p<sub>T</sub><sup>2</sup>, it is extrapolated using different templates.
- These differences, however, are small to the total incoherent production cross section.



### First measurement of y-dependence of J/ψ at RHIC

- Important measurements to constrain theoretical models
- Ratio of incoherent to coherent cross section largely cancels uncertainties both experimentally and theoretically
- New studies show this ratio is sensitive to nuclear structure and nuclear deformation (by <u>W. Zhao et al.</u> at a recent INT workshop)





### AuAu UPCs: two-source ambiguity





### Photon flux and neutron emissions for coherent J/ $\psi$



- If VM at rapidity y ≠ 0, there is a high energy photon ( $k_1$ ) candidate and a low energy photon ( $k_2$ ) one;
- Different photon energies correspond to different flux factors (~number of photons)
- Different neutron emission classes associate with different flux factors

#### Neutron classes:

- **0n0n:** no neutron on either side
- **0nXn:** >=1 neutron on one side
- XnXn: >=1 neutron on both sides

### Photon flux and neutron

# $\begin{array}{l} Au+Au \rightarrow J/\psi + Au^* + Au^* \left(\sqrt{s_{_{NN}}} = 200 \ \text{GeV}\right) \\ \hline Mirrored \pm y \\ \hline Mirrored \pm y \\ \hline Model and assumptions \end{array}$

a) Coherent  $J/\psi$  production is independent of neutron emissions

10





Reference to BeAGLE: Phys. Rev. D 106 (2022) 1, 012007



### Neutron emission helps resolve the two-source ambiguity

$$\frac{d\sigma^{AnBn}/dy}{+\Phi_{T.\gamma}^{AnBn}(k_{1})} \sigma_{\gamma^{*}+Au \rightarrow J/\psi+Au}(k_{1}) + \Phi_{T.\gamma}^{AnBn}(k_{2})\sigma_{\gamma^{*}+Au \rightarrow J/\psi+Au}(k_{2})$$
Measurements Photon fluxes Unknowns (slide 9) (slide 11)

Eur. Phys. J C (2014) 74:2942

See also CMS talk on Tuesday by Z. Ye

Need to measure differential cross section in *y* and in neutron emission classes; **at least 2 equations to solve 2 unknowns.** 



### Coherent J/ $\psi$ cross section vs energy W



- STAR kinematics is unique to the low W region, while gluon saturation models generally focus on higher energy.
- Shadowing model LTA describes the data very well. The suppression factor (data/IA) is ~ 60%
- Sensitive to the transition region between high-x and low-x.

Reference to CGC: *Phys. Rev. D* 106 (2022) 7, 074019 Reference to LTA: 1) Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942 2. Strikman, Tverskoy, Zhalov, PLB 626 (2005) 72-79



### Incoherent J/ $\psi$ cross section vs $p_T^2$

- Compared to the H1 data with free proton.
   The suppression factor ~ is 40%.
   Stronger than that for coherent production.
- Models have found that the H1 data supports sub-nucleonic fluctuation. [Phys. Rev. Lett. 117 (2016) 5, 052301]
- STAR data shows the bound nucleon has a similar shape in p<sub>T</sub><sup>2</sup> as the free proton, indicating similar sub-nucleonic fluctuation in heavy nuclei. [Phys. Rev. D 106 (2022) 7, 074019]





### Incoherent J/ $\psi$ cross section vs $p_T^2$





### A full picture: coherent + incoherent



- STAR data compared with four theory/MC models.
- Sartre with sub-nucleonic fluctuation (s.n.f) & CGC are similar models but different by a normalization factor ~ 0.65.
- Question to theorists: Why?



# **NLO** calculation

Next-to-Leading Order (NLO) pQCD calculation, constrained **by the LHC data** 

EPPS21 + scale at 2.39 GeV. Only scale uncertainty shown.

Could not describe the STAR data at y = 0.

Reference to NLO pQCD calculation:

a) arXiv:2210.16048

b) Phys. Rev. C 106 (2022) 3, 035202





### Summary





# **STAR** has made many **first-time** $J/\psi$ measurements in UPCs at RHIC:

- ✓ Strong nuclear suppression seen for both coherent (~ 40%) and incoherent (~60%) production
- ✓ Bound nucleon and free proton have similar shape in p<sub>T</sub><sup>2</sup> up to ~ 2 (GeV/c)<sup>2</sup>



# **Forward detector** at STAR and Run 23-25 enables:

- ✓ Low W phase space down to < 10 GeV
- ✓ First-time **φ meson** photoproduction
- $\checkmark\,$  High statistics J/ $\psi$  at higher  $p_T{}^2$
- $\checkmark\,$  Spin-dependent J/ $\psi$  production
- ✓ ...more



### Special thanks to: Summary

### Outlook

### CGC: Heikki Mäntysaari, Farid Salazar, Björn Schenke Sartre: Tobias Toll, Arjun Kumar Nuclear shadowing: Vadim Guzey, Mark Strikman, Mikhail Zhalov NLO pQCD: Topi Löytäinen et al.

### For discussions and inputs.

|       |                                 | ٩           | H1 template fit: $\chi^2/ndf =$<br>CGC with fluctuation |
|-------|---------------------------------|-------------|---------------------------------------------------------|
|       | * STA                           | R AuAu data | 1 CGC without fluctuation                               |
| 15 20 | 25 30<br>W <sub>γ*N</sub> (GeV) | 35          | 10 <sup>-1</sup><br>p <sub>T</sub> <sup>2</sup> (Ge     |

**STAR** has made many **first-time** measurements in UPC J/ $\psi$  at RHIC:

- ✓ Strong nuclear suppression seen at both coherent (~ 60%) and incoherent (~40%)
- ✓ Supports **sub-nucleonic fluctuation**.

**Forward detector** at STAR and Run 23-25 enables:

- ✓ Low W phase space down to < 10 GeV
- ✓ First-time **φ meson** photoproduction
- ✓ High statistics  $J/\psi$  at higher  $p_T^2$



### Backup



### **Two-source interference**



Rapidity dependence is consistent with theory/model; interference effect is stronger if photon energies are similar.



First observed w.  $\rho^0$  in 2008 by STAR (Phys.Rev.Lett.102:112301,2009)

Reference to CGC: Phys. Rev. D 106 (2022) 7, 074019



### **Neutron emissions in UPCs**



Neutron classes:

- **0n0n:** no neutron on either side
- **0nXn:** >=1 neutron on one side
- XnXn: >=1 neutron on both sides



UPCs have large contributions from QED Coulomb excitations





### **Comparison to CGC**

