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• Saturation regime: breakdown of 

the parton picture  


• Relevant d.o.f.’s: strong classical 

fields   
Aμ ∼ g−1 ≫ 1

Strong fields 



Motivation

Strong fields 

Bjorken limit Regge limit 

s ∼ Q2 s ≫ Q2

Partons

How to connect the two regimes from first principles? 
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Gluon PDF at moderate x Dipole gluon distribution at small x 

⟨P | Fi−(z+) W Fi−(0+) W† |P⟩ eiz+xP− ⟨P | Tr Ur U†
0 |P⟩

0+ z+

Fi−Fi−

Fi− ≡ ∂iA− − ∂−Ai − ig[Ai, A−]

r⊥

0

r⊥ = 0

Ur ≡ [+∞, − ∞]r = P exp (ig∫
+∞

−∞
dz+A−)

Bjorken limit Regge limit 
f(x) + O(Q−2) f( x = 0 , k⊥) + O(s−1)

Two different kinds of gluon distributions
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Diagnosing small x

• Dipole distribution evaluated in the strict x=0 limit 

• QCD factorization: Hard part integrated over  x

Bjorken limit Regge limit 

s ∼ Q2 s ≫ Q2

σ ∼ ∫ dx H(x) f( x ) σ ∼ f( 0 ) ∫ dx H(x)
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Diagnosing small x

6

 Lappi and Mäntysaari (2015)
• Instability of NLO BFKL/BK: rapidity   

evolves independently from   violating    
ordering (producing large collinear logs) 

Y ≡ log(q+/Λ+)
r⊥ k− = xP−

Beuf  (2014) Ducloué, Iancu, Mueller, Soyez, 
Triantafyllopoulos  (2015-2019)
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6

 Lappi and Mäntysaari (2015)
• Instability of NLO BFKL/BK: rapidity   

evolves independently from   violating    
ordering (producing large collinear logs) 

Y ≡ log(q+/Λ+)
r⊥ k− = xP−

Beuf  (2014) Ducloué, Iancu, Mueller, Soyez, 
Triantafyllopoulos  (2015-2019)

• Similar issues in forward hadron production in pA and forward dijet production in DIS

Salam (1998), Shi, Wang, Wei, Xiao (2021) Liu, Xie, Kang, Liu, (2022) Caucal, Salazar, Schenke, 
Venugopalan, (2022) Taels, Altinoluk, Beuf, Marquet (2022) 

• Ad hoc solutions: restoring kinematic constraint in , resummation, better 
choice of evolution variable 

k−

η ∼ log k−



7

Beyond shockwave approximation

7

• Sub-eikonal expansion around the shock wave    [Agostini, Altinoluk, Armesto, 
Beuf, Martinez, Moscoso, Salgado]


• Expansion in the boost parameter  [Chirilli] ; [Altinoluk, Beuf, Czajka, Tymowska] 

• Addition of a single hard scattering [Jalilian-Marian] 


δ(x+)
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δ(x+)

Our approach: 
‣ Revisit the shock wave factorization scheme to restore the x dependence of the 

gluon distribution - consistent with factorization in  [Balitsky-Tarasov]

‣ Perform a partial twist expansion to connect Regge and Bjorken limits

k+

f(k⊥, x) + O ( xBj

Q2 )
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• Restore x dependence: ordering of interactions in   built in  ordering x+ → k−
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Revisiting high energy factorization 

8

• Restore x dependence: ordering of interactions in   built in  ordering x+ → k−

G ∼ G0(Δx, Δx+) UX

Δx2 ∼ xBj/Q2
U X

X ↔︎

• Partial twist expansion: neglect transverse recoil 

quantum phase
e−ixP−Δx+

Wilson line
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Revisiting rapidity factorization in DIS

σ(xBj, Q2) ∼ e2 ∫
1

0
d z ∫

1

0
dx∫ℓ,k

H (ℓ, k, z, xBj) δ (x − xBj −
ℓ 2

2zz̄q+ ) xGij(x, k) + O (k2
⊥/s)

q

!− k
2 ! + k

2

γ∗

q − ! + k
2 q − !− k

2

P P

• PTE to leading power yields the factorization formula (for the transverse 
photon cross-section), in momentum space,  Boussarie, MT (2020-2021)
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q − ! + k
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P P
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3D gluon distribution 

( r , z+ )

Fi−(sr)

( 0 , 0+ )

xGij(x, k⊥) ≡ 2∫s,s′￼
∫

dz+dr
(2π)3P−

e i x P−z+−ik⋅r ⟨P | Tr [ 0 , z+]r Fj− (z+, s′￼r) [ z+ , 0]0 Fi− ( 0 , sr) |P⟩

Fj−(s′￼r)

• Note that this uPDF involves finite Wilson lines in contrast with gluon TMD’s such as 
Weizsacker-Williams

 Boussarie, MT (2020-2021)

0+ z+

Fi−Fi−

r⊥ = 0r⊥ = 0

PDF
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Cross-checks I: NLO DIS

12

FT(xBj, Q2) =
αs

π ∑
f

q2
f ∫

1

xBj

dy xg(xBj /y, μ2)

• In the collinear limit , we recover the 1-loop contribution to the DIS 
structure function 

Q2 → ∞

× [ 1
ϵ ( eγE

4π )
ϵ

Pqg(y) + [(1 − y)2 + y2] log [ Q2(1 − y)
μ2y ] − 1 + 4y(1 − y)]



13



14

TT transition: 

LL transition: 

Cross-checks II: NLO DVCS, TCS and DDVCS 

[Hoodboy, Ji (1998)] 
[Pire, Szymanowski, Wagner (2011)] 

 Boussarie, MT (in preparation)



Structure of quantum corrections 
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• Rapidity evolution: increase the space of the gluon kt-distribution from 1 to 2 variables 

k⊥

Λ+
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Aμ → aμ + Aμ

Enhanced at small x 

0+ z+

Structure of quantum corrections (in progress)

Background field method:
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Aμ → aμ + Aμ

Enhanced at small x 

Suppressed at small x as O(1/s) (necessary to recover DGLAP at leading twist)

0+ z+

Structure of quantum corrections (in progress)

Background field method:



Dynamical kinematic constraint: linear regime (in progress)

17

ΔGij(x, k) ∼ ᾱ∫
dk+

k+ ∫ dx′￼∫l,q
Kij,lm(x, l, k, q) δ (x′￼− x −

l2

2k+P− ) xGlm(x′￼, q) + non − lin

l − q/2

l + q/2

• Similar to DIS factorization formula 


•   is the evolution variable 


• The ordering in   is explicit   


• Rapidity and collinear divergence recovered in the 
corresponding limits

k+

x x′￼ > x

x′￼, q
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