Orbital Angular Momentum at Small x Revisited

28 Mar 2023, 09:40
20m
Centennial Room ABC (MSU Kellogg Center)

Centennial Room ABC

MSU Kellogg Center

Parallel talk WG2: Small-x, Diffraction and Vector Mesons WG2

Speaker

Brandon Manley

Description

We revisit the problem of the small Bjorken-$x$ asymptotics of the quark and gluon orbital angular momentum (OAM) distributions in the proton utilizing the revised formalism for small-$x$ helicity evolution derived recently in \footnote{F. Cougoulic, Y. V. Kovchegov, A. Tarasov, and Y. Tawabutr, Journal of High Energy Physics 2022,
10.1007/jhep07(2022)095 (2022).}. We relate the quark and gluon OAM distributions at small $x$ to the polarized dipole amplitudes and their (first) impact-parameter moments. To obtain the $x$-dependence of the OAM distributions, we derive novel small-$x$ evolution equations for the impact-parameter moments of the polarized dipole amplitudes in the double-logarithmic approximation (summing powers of $\alpha_s \ln^2(1/x)$ with $\alpha_s$ the strong coupling constant). We solve these evolution equations numerically and extract the large-$N_c$, small-$x$ asymptotics of the quark and gluon OAM distributions, which we determine to be
\begin{align}
L_{q+\bar{q}}(x, Q^2) \sim L_{G}(x,Q^2) \sim \Delta \Sigma(x, Q^2) \sim \Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{3.66 \, \sqrt{\frac{\alpha_s N_c}{2\pi}}},
\end{align}
in agreement with \footnote{R. Boussarie, Y. Hatta, and F. Yuan, Physics Letters B 797, 134817 (2019).} within the precision of our numerical evaluation (here $N_c$ is the number of quark colors). We also investigate the ratios of the quark and gluon OAM distributions to their helicity distribution counterparts in the small-$x$ region.

Submitted on behalf of a Collaboration? No
Participate in poster competition? No

Primary authors

Presentation materials