Coherent photoproduction in incoherent interactions? A challenge for Good-Walker, and some thoughts on a fix Spencer R. Klein, LBNL

Presented at Deep Inelastic Scattering 2023
March 27-31, East Lansing, MI

- The Good-Walker paradigm
- Two examples where it fails
- Why it fails
- An alternate approach
- A second issue with Good-Walker
- Future needs
- Conclusions

Based on SK, arXiv:2301.01408

Beyond gluon densities: to spatial distribution and fluctuations

- The Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-byevent fluctuations respectively
 - ◆ Configuration = position of nucleons, gluonic hot spots etc.
- Coherent: Nucleus remains in ground state, so sum the amplitudes, then square -> average over different configurations
- Incoherent = Total coherent; total: square, then sum crosssections for different configurations

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Average cross-sections (Ω)}$$

$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Average amplitudes (Ω)}$$

 $\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \bigg(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \bigg) \quad \text{Incoherent is difference}$

Transverse interaction profiles

The coherent cross-section gives us access to the transverse spatial distribution of individual targets within the nucleus

$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \langle A(K,\Omega) \rangle \right|^2 \qquad \text{Average amplitudes (Ω)}$$

$$\bullet \ \ \mathsf{t=p_T^2+p_z^2 \sim p_T^2}$$

- p_T and b are conjugate. d_σ/dp_T encodes information about the transverse locations of the interactions
 - Without shadowing, this is the shape of the nucleus
- The two-dimensional Fourier transform of dσ/dt gives F(b), the transverse distribution of targets

$$F(b) \propto \frac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{\frac{d\sigma}{dt}}$$
 *flips sign after each diffractive minimum

 Multiple serious caveats – range of integration/ windowing finding diffractive minima, subtracting out photon p_T etc.

Incoherent production and event-by-event fluctuations

The incoherent cross-section lets us measure the event-byevent fluctuations in the nuclear configuration, including the positions of individual nucleons, gluonic hot spots, etc.

$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right)$$

- Probes the deviations from the mean.
- The connection between t and impact parameter is weaker than for coherent production, but this can be used to test models.

Examples of coherent photoproduction where Good-Walker predicts it should not occur

- Coherent: peak with p_T ~ < hbar/R_A
- AA -> A*A* V
 - Coherent photoproduction with nuclear excitation
- All published STAR UPC analyses REQUIRE mutual Coulomb excitation in trigger
- ALICE also sees coherent photoproduction in events containing neutrons
- Explained by diagram with independent photon emission
 - ◆ Also possible with single photons, especially at larger p_T
- Good-Walker does not have an exception for mostly separable reactions

Coherent photoproduction in peripheral collisions

- Coherent J/ψ photoproduction in peripheral hadronic collisions
 - ◆ Peak at p_T < ~ hbar/R_A
- Seen by ALICE and STAR

ALI-PREL-309896

Why does Good-Walker fail here?

- Good-Walker assumes that the incident probe is a single photon (or other particle)
 - An interacting ion or electron can emit more than one photon
 - We cannot tell how many photons participate in the reaction
 - lons are more likely to radiate photons than electrons, but this is a question of degree
 - Two-photon exchange effects have been observed in form-factor measurements in eA collisions at Jefferson Lab
- We cannot tell if another particle(s) is present in the interaction
- What about the reaction factorization?
 - Intermediate ions may be (slightly) virtual
 - ◆ Factorization is imperfect

Other possible sub-reactions

- Bremsstrahlung from the ion
 - ◆ 1/k photon energy spectrum
 - Logarithmically divergent
- Pair production
 - Electron mass keeps cross-section finite, but large
 - 200,000 barns for Pb-Pb at the LHC
 - → P(pair) ~ >1 for b>= 2 R_A
 - Lepton p_T peaked at ~ few m_e
 - Leptons are at large rapidity
 - Most of these pairs are invisible
- There are many ways to have additional, unseen particles
- Small kinematic changes, but breaks exclusivity of reactions
 - ◆ Good-Walker requires exclusive reactions!

Time scales

- The target may be involved in multiple subprocesses at once
- Different time scales ~~ hbar/energy scale
- Two cases
 - For UPC VM + XnXn excitation
 - → Excitation time scale hbar/E_{exc} >> VM production hbar/M_V
 - Photoproduction in peripheral collisions
 - Time scales are similar or hadronic reaction is faster.
 - If hadronic interactions occurs first, $W_{\gamma p}$ will be lower, reducing the cross-section. Any calculation should consider both time orderings.
 - Testable with better calculations and more accurate data
- Calculations that separate these time scales might be able to explain VM production with Coulomb excitation, but would not solve the problem for peripheral collisions.

An alternate, semi-classical approach

- Sum reactions where the target is indistinguishable
- - Assume A_i are identical
 - ◆ For kb < hbar exp(ikb) ~ 1, and the amplitudes add coherently</p>
 - + d σ /dt $|_{t=0} \sim N^2$
 - ◆ For kb > hbar exp(ikb) the exponential has a random phase
 - + $d\sigma/dt$ |_{t=0} ~ N
- This naturally predicts coherent and incoherent regimes
 - Could add multiple interactions (ala Glauber) to include shadowing
 - Could include nucleon excitation regime by introducing partons
- Does not follow the target after the interaction
 - Insensitive to nuclear breakup
- Could accommodate gradual loss of coherence

Another issue with Good-Walker: incoherent emission in lead vs. gold

- In GW, the incoherent photoproduction cross-section depends on nuclear fluctuations
 - ◆ The density profiles for lead and gold are similar
 - Woods-Saxon distributions
 - Gluon shadowing should be similar
 - ◆ In GW, incoherent cross-sections should be similar
- Their shell-model structure is very different. This quantizes the energy transfer for low-|t| excitations, so may lead to rather different low-|t| incoherent production
- Different wave function bases: nucleon positions, etc. or shell model orbitals

Neutron emission in gold and lead

Lead-208

²⁰⁸ Pb	207.976627	Daltons		
²⁰⁷ Pb	206.975872	Daltons		
Neutron	1.00867108	Daltons		
²⁰⁷ Pb+n	207.984543	Daltons		
ΔΕ	-0.0079160	Daltons		
ΔΕ	-7.38	MeV		
P(single N)	118	MeV/c		

Gold-197

¹⁹⁷ Au	196.966569	Daltons		
¹⁹⁶ Au	195.96657	Daltons		
Neutron	1.00867108	Daltons		
¹⁹⁶ Au+n	196.975241	Daltons		
ΔΕ	-0.00867238	Daltons		
ΔΕ	-8.07	MeV		
P(single N)	122	MeV/c		

Both reactions are **endothermic**. There is a threshold for single neutron emission. As expected for stable nuclei. The energy thresholds are similar.

Proton emission thresholds are ~ similar for the two nuclei

Kinematics of nucleon emission

- The simplest model is that the photon strikes a single nucleon, ejecting it from the nucleus.
 - ◆ p²=E/2m; If it takes E> 5-8 MeV to break up then nucleus, minimum initial nucleon momentum ~ 100 MeV/c
- This model is supported by STAR data. At larger |t|, do/dt for coherent dipion production is consistent with a dipole form factor used for protons (but inconsistent with an exponential)
- The VM recoils against it
 - ♦ p_{T, VM} >~ 100 MeV/c
 - At lower momenta, incoherent photoproduction must involve excited states decaying by photon emission

SK for STAR, arXiv:2107.10447

Nuclear excitation in the shell model regime

- At lower energies, excitation is determined by the shell model. Nuclei are excited to specific states, which decay by emitting one or more photons.
 - ◆ E> ~ 5 MeV statistical model for photon emission
 - E < ~ 5 MeV de-excitation by γ transitions between states
- Lead's lowest excited state is at 2.6 MeV
 - Doubly magic
- Gold has an excited state at 77 keV
 - ◆ Lifetimes ~ 1.92 ns, so photonic deexcitations are invisible in RHIC/LHC/EIC detectors
- Very different energy levels, so expect different behavior at small |t| -> in GW, this is equivalent to predicting very different event-by-event fluctuations

Implications

- GW and the semi-classical model make similar predictions for coherent photoproduction for targets that remain in the ground state.
- For targets that are excited, in the semi-classical model, coherent prediction remains even when GW predicts it should disappear.
 - The semi-classical model correctly predicts this.
- Incoherent production has very different origins in the two models
 - ◆ GW nuclear fluctuations (no dynamical origin)
 - Semi-classical depends on momentum transfer, and distinguishability of the struck target.
- If we cannot see all target excitations, GW will mis-classify some reactions, and so mis-estimate the degree of nuclear fluctuations.
 - How can such soft (so with long time scales) reactions affect what happens at much higher energy scales?

Next steps

- We need to develop the GW formalism to properly account for more complicated reactions.
 - ◆ Coherent production should degrade gracefully in the presence of additional reactions.
 - This probably requires a higher order, or field theoretical formulation
- Precise measurements of coherent photoproduction in peripheral collisions would shed light on the gradual loss of coherence
 - ♦ What is the slope of do/dt?
 - How large is the coherent region?
 - ♦ How does do/dt depend on the reaction plane?
 - The spectator region is not spherical
 - How does the cross-section change with centrality?
 - Time ordering, size of coherent region, J/ψ survival

Conclusions

- The Good-Walker approach connects coherent photoproduction with the transverse distribution of targets, and incoherent photoproduction with target fluctuations.
- Coherent VM photoproduction is seen in two regimes where GW says it should occur. A semi-classical calculation can explain this data.
- GW expects a single incident photon, whereas UPCs and eA collisions may involve multiple photons.
- There are many ways for VM photoproduction to produce unseen particles, complicating the separation into coherent and incoherent interactions, further confusing the picture.
 - ◆ The GW formalism needs to be extended to account for more complicated reactions with additional particles.

Incoherent final states

- Neutron emission is assumed dominant
- Proton emission is also possible, but subdominant because the nuclear surface is mostly neutrons
- Photon emission
 - Calculations assume momentum transfer to a single nucleon, followed by an intranuclear cascade
 - Microscopic model, many uncertainties
 - What is the region of validity
 - Strikman et al.: in LHC PbPb UPCs, ~7% of incoherent
 J/ψ come w/o neutrons
 - BeAGLE Monte Carlo: fraction of incoherent photoproduction depends on t
 - → ~~2% at large t, larger at small t

Other caveats and concerns

- Breakup into A>1 fragments might also be possible.
 - Strictly speaking, Good-Walker applies only for stable final states.
 - Miettinen and Pumplin, "Coherent Production on Nuclei Does Not Measure Total Cross-Sections for Unstable Particles," Phys. Rev. Lett. 42, 204 (1979).
 - ◆ Caneschi and Schwimmer, "Diffractive Production on Nuclei and Total Cross-Sections of Unstable Particles, Nucl. Phys. B133, 408 (1978).
 - It would be interesting to add a small calorimeter to ALICE to try to measure these low-energy photons from lead excitation. It is possible that the proposed calorimeter to test Low's theorem might be suitable for this.

Incoherent recoil

- UPC data, from ALICE and others is well fit by the assumption that, in incoherent photoproduction, a single nucleon recoils.
 - ◆ Implicit in STARlight
 - ◆ Clearly seen for |t|>~0.1 GeV²
- dσ/dt well fit by dipole form factor.
 - ◆ Exponential does not fit the data.
- Slope is consistent with single nucleon recoil
- $|t| = p_T^2 + p_z^2;$
 - Well above threshold p_z is subdominant
 - $+ |t_{min}| = p_z^2 \text{ is small}$
- Assume single nucleon recoil for the rest of the talk

STAR, Phys. Rev. **C96**, 054904 (2017)

Minimum energy for nucleon emission

- Nucleon emission from is endothermic.
 - ◆ The required energies are 7-8 MeV, except for proton emission from ¹⁹⁷Au, where threshold energy is 5.3 MeV.
- For a recoiling on-shell nucleon, this is
 - ◆ p ~ 100-120 MeV/c
 - ♦ |t|> 0.01 (GeV/c)²
 - Approaches first diffractive minimum
- Nucleon emission disallowed at lower energy transfer
- The small phase space should lead to a slowish turn-on above threshold.
- Implications for both the EIC and UPCs

Region where incoherent background subtraction is questionable

Minimum energy for proton emission

What is the minimum energy for a heavy nucleus to emit a proton? Energy balance only (neglecting potential energy barriers)

Lead-208

²⁰⁸ Pb	207.976627	Daltons		
²⁰⁷ TI	206.975872	Daltons		
Proton	1.00727647	Daltons		
²⁰⁷ TI+p	207.9846954	Daltons		
ΔΕ	-0.00806846	Daltons		
ΔΕ	-7.57	MeV		
P(single N)	118	MeV/c		

Gold-197

¹⁹⁷ A u	196.966569	Daltons		
¹⁹⁶ Pt	195.964952	Daltons		
Proton	1.00727647	Daltons		
¹⁹⁶ Pt+p	178.984701	Daltons		
ΔΕ	-0.0056592	Daltons		
ΔΕ	-5.27	MeV		
P(single N)	99	MeV/c		

These reactions are also endothermic, with a threshold for single proton emission. The required energy for gold-197 to emit protons is lower than the energy required to emit neutrons.

Breakup into heavier fragments might be possible.

Incoherent photoproduction without nucleons

- Strikman et al.: in LHC PbPb UPCs, ~7% of incoherent J/ψ come w/o neutrons
- BEAGLE simulations
 - nucleon-free fraction depends on |t|
 - Expected nuclear breakup depends on available energy
 - ♦ Rejection < ~ 1/50 at large |t|</p>
- Large theoretical uncertainties from intranuclear cascade models
- Nucleon-free modes radiate only ~ MeV photons
 - Only half are Lorentz boosted
 - Large uncertainties on # of photons, energies
 - We need to know these distributions!

Plot from Wan Chang presentation at Pavia meeting

²⁰⁸Pb

- No low-lying nuclear states
- First state, 2.6 MeV, corresponds to p_T= 70 MeV
 - ◆ No accessible incoherent excitation for p_T < 70 MeV/c</p>
 - Marginally accessible: 3 hbar angular momentum needed.

#	Nuclide	E _x [keV]	J ^π order	Band	T _{1/2}	T _{1/2} [s]	Decay modes BR [%]	Isospin	μ [μ _N]	Q [b]	Additional data	Comments
1	²⁰⁸ Pb	0	0+		STABLE							
2	²⁰⁸ Pb	2614.522 <i>10</i>	3-		16.7 ps <i>3</i>	1.67E-11			+1.9 2	-0.34 <i>15</i>		
	²⁰⁸ Pb	3197.711 <i>10</i>	5-		294 ps <i>15</i>	2.94E-10			+0.11 4		El. Trans. Prob. 0.0447 <i>30</i>	
4	²⁰⁸ Pb	3475.078 11	4-		4 ps 3	4E-12						
	²⁰⁸ Pb	3708.451 <i>12</i>	5- <i>2</i>								El. Trans. Prob. 0.0241 <i>18</i>	
6	²⁰⁸ Pb	3919.966 <i>13</i>	6-		690 fs	6.9E-13						
	²⁰⁸ Pb	3946.578 <i>14</i>	4- 2		430 fs	4.3E-13						
	²⁰⁸ Pb	3961.162 <i>13</i>	5- <i>3</i>								El. Trans. Prob. ≈ 0.0008	
	²⁰⁸ Pb ₁₂₆	3995.438 <i>13</i>	4- 3		690 fs	6.9E-13						
		4037.443 <i>14</i>	7-		690 fs	6.9E-13					El. Trans. Prob. ≈ 0.0010	
	²⁰⁸ Pb	4051.134 <i>13</i>	3- 2		326 fs <i>+28-21</i>	3.26E-13						
12	²⁰⁸ Pb	4085.52 <i>4</i>	2+		0.80 fs 4	8E-16				-0.7 <i>3</i>		
	²⁰⁸ Pb	4125.347 <i>12</i>	5- 4		490 fs	4.9E-13						
14	²⁰⁸ Pb ₁₂₆	4144?5	+									
		4180.414 <i>14</i>	5- <i>5</i>		319 fs <i>35</i>	3.19E-13						
	²⁰⁸ Pb	4206.277 14	6- <i>2</i>		690 fs	6.9E-13						
	²⁰⁸ Pb	4229.590 <i>17</i>	2-		333 fs <i>28</i>	3.33E-13						
	²⁰⁸ Pb	4254.795 <i>17</i>	3- <i>3</i>		97 fs 7	9.7E-14	., .	4.1		1 / / /		

From https://nds.iaea.org/reInsd/vcharthtml/VChartHTML.html

Nuclear structure of ¹⁹⁷Au

Many excited states below 1 MeV

