

Dipion & Dikaon Photoproduction in ultra-peripheral Pb-Pb collisions with ALICE

Abdennacer Hamdi for the ALICE collaboration

International Workshop on Deep-Inelastic Scattering and Related Subjects

East Lansing, Michigan

March 27 - 31, 2023

Ultra-Peripheral Collisions (UPC)

- UPC interactions is where the impact parameter is greater then the sum of nuclear radii
- Hadronic interactions suppressed
- $^{\circ}$ Photon-initiated reactions dominate (photon flux $\propto Z^2$)

photon-nucleon CM Energy :
$$W_{\gamma p}^2 = 2EM_{V\!M}e^{\pm y}$$

E: beam energy, per nucleon

 $M_{V\!M}$: vector meson mass

y : vector meson rapidity

Reaching highest energy photon beams at LHC, up to ~1 TeV

Vector Meson Production in UPC

- $^{\rm o}$ Photons fluctuate into $q\bar{q}$ pair $J^{PC}=1^{--}$
- $^{\rm o}$ Photons scattering off the target: $< p_{\rm T} > \sim 1/R_{\rm target}$
 - Coherently (target Pb): ~ 50 MeV/c
 - Incoherently (target proton): ~ 400 MeV/c

Vector Meson photoproduction cross section sensitive to gluon density in nuclei
 [Ryskin: Z. Phys. C 57, 89 (1993), K.J. Eskola et. al Phys. Rev. C 106 (2022) 035202]

$$x = \frac{M_{VM}^2}{W_{\gamma p}^2}$$
 @ LHC: $10^{-5} < x < 10^{-2}$

$$Q^2 \sim \frac{M_{VM}^2}{4}$$
 for : $ho(770) \sim 0.15~{\rm GeV^2}$, $\phi(1020) \sim 0.26~{\rm GeV^2}$

Exclusive Dipion Photoproduction

- $^{\rm o}$ High energy vector meson photoproduction cross section $\sigma \sim W_{\gamma \rm p}^{\delta}$
- $^{\circ}$ $\rho(770)$ dominates the total vector meson production cross section

Exclusive Dipion Selection in ALICE Detector

Coherent $\rho(770)$ Photoproduction

- $^{ extstyle }$ Measured mass-dependent differential cross section of ho^0 in Pb-Pb, and first time in Xe-Xe at UPC
- $^{\circ}$ ρ^0 resonance + direct $\pi^+\pi^-$ well described by Söding formula:

$$\frac{d\sigma}{dmdy} = \left| A \frac{\sqrt{m \, m_{\rho} \, \Gamma(m)}}{m^2 - m_{\rho}^2 + i \, m_{\rho} \, \Gamma(m)} + B \right|^2 + M,$$

$$\Gamma(m) = \Gamma(m_{\rho^0}) \frac{m_{\rho^0}}{m} \left(\frac{m - 4m_{\pi}^2}{m_{\rho^0} - m_{\pi}^2}\right)^{3/2}$$

M: accounts for $\gamma\gamma \to \mu^+\mu^-$ contribution

A, B : Amplitudes of the ρ^0 and direct $\pi^+\pi^-$, respectively

Nuclear Dissociation

Pb

- Neutrons are occasionally emitted from excited ions
- Neutrons measured in Zero Degree Calorimeters (ZDC)
 - ±112.5m from interaction point
 - Efficient neutron detection at |y| > 8.8

Pb

Pb*

$\rho(770)$ Photoproduction Cross Section

- Neutron emission sensitive to impact parameter (b)
 - no neutron emitted (0n0n) → large b
 - neutron emitted in one beam side → medium b
 - neutron emitted in both sides (XnXn) → small b
- Tool to disentangle low- & high-energy photon interactions

- Data in good agreement with models
 - Shadowing: GKZ
 - Saturation : CCKT
- Xe-Xe data well described by the forward neutrons generator in UPC ($n_o^o n$)

[Broz et. al.: CPC 253 (2020) 107181]

Photoproduction Cross Section vs. Atomic Number

- Dependance of the atomic number (A) on ρ^0 photoproduction cross section at $W_{\gamma p}$ = 65 GeV is consistent with power-law behavior $\sigma(A) = \sigma_0 A^{\alpha}$ with a slope of α = 0.96 ± 0.02.
- The slope found in data is significantly different from a purely coherent process expectation → shadowing effect

High Mass Dipion Photoproduction

- Observation of resonance-like structure in coherent $\pi^+\pi^-$ mass
 - Mass: $1725 \pm 17 \text{ MeV}/c^2$
 - Width: $143 \pm 21 \text{ MeV}/c^2$

Period Resonance consistent with $\rho_3(1690)$ listed in PDG

$$J^{PC} = 3^{--}$$

Observed in coherent-production process

Dikaon Photoproduction in UPC

- First look into dikaon photoproduction in UPC
- Very challenging signal, competes with the background from the dipion final state
- $^{\circ}$ Study exclusive K^+K^- events in UPC, produced through $\phi(1020)$ decay or direct production
- Similar event selection and data runs as the ALICE dipion analysis [JHEP 06 (2020) 35]

High Mass Dikaon Photoproduction

- $^{\circ}$ Characteristic coherent photoproduction at low pair transverse momenta p_T < 0.1 GeV/c
- Continuum at high momenta corresponds to incoherent productions
- Pair tracks with Kaon mass hypothesis
 - Before kaon selection → mis-identified $\rho(770)$ at ~1.2 GeV/ c^2
 - Very soft kaons \rightarrow suppressed $\phi(1020)$

Kaon Selection

- Pejecting π^{\pm} , μ^{\pm} , e^{\pm} contamination from both tracks using the TPC dE/dx defined in number of SD from the model ($n\sigma$)
 - $|n\sigma_{\pi^{\pm}}| > 2$
 - $|n\sigma_{\mu^{\pm}}| > 2$
 - $|n\sigma_{e^{\pm}}| > 2$
- $^{\circ}$ Kaon selection $|n\sigma_{K^{\pm}}| < 3$ for both tracks \to clean K^+K^- pairs achieved in the mass range [1.1, 1.4 GeV/ c^2]

Summary

- Vector meson photoproduction in UPC is an important tool to probe the dynamics of photonuclear interaction and gluon distribution in nuclei
- $^{\circ}$ Measured ho^0 photoproduction cross section in Pb-Pb and for first time in Xe-Xe at UPC, at different neutron emission classes
- $^{\circ}$ ho^0 cross section well described by models based on shadowing and saturation
- $^{\circ}$ Atomic number dependence on ho^0 coherent photonuclear cross section signals important shadowing effects
- $^{\circ}$ Resonance-like structure found at dipion mass of 1.7 GeV/ c^2 and a width of about 140 MeV/ c^2 in Pb–Pb UPC
- ALICE has great potential to study dikaon photoproduction in UPCs
- Expecting large increase in statistics and data collection efficiency with new ALICE data (~ x13 in luminosity)

Thank you

VM cross section vs. nuclear gluon distribution

The cross section for the exclusive elastic photoproduction of a vector meson V on nucleon A

$$\frac{d\sigma^{\gamma A \to VA}}{dt} \bigg|_{t=0} = \zeta_V \frac{16\pi^3 \alpha_s^2 \Gamma_{ee}}{3\alpha_{em} M_V^5} [xg_A(x, Q^2)]^2$$

Neutron emission vs. impact parameter

Models description

- GKZ: VDM + Gribov-Glauber model of nuclear shadowing accounting for photon fluctuations into intermediate diffractive states, [V. Guzey, E. Kryshen and M. Zhalov, Phys. Rev. C93 (2016) 055206]
- CCKT: colour-dipole model + gluon "hot spots" in the structure of the nucleon in the transverse plane + Glauber model for nuclear effects, [J. Cepila, J. G. Contreras, M. Krelina, and J.Tapia Takaki, Nucl. Phys. B934 (2018) 330–340]
- GMMNS: lancu-Itakura-Munier (IIM) approach for gluon saturation + colour-dipole model, [Goncalves, Machado, Morerira, Navarra and dos Santos, Phys. Rev. D96 (2017) 094027]
- STARLight: $\gamma + p \rightarrow VM + p$ cross section + the optical theorem + Glauber-like eikonal formalism, [S.Klein, J.Nystrand et al. Comp. Phys. Comm. 212 (2017) 258]

