

Office of Science

Coherent and incoherent J/\psi photoproduction

Daniel Tapia Takaki

for the ALICE Collaboration

Deep Inelastic Scattering (DIS)

Michigan State University

March 30, 2023

Gluonic saturated matter

At high energies, or for heavy nuclei at lower energies, gluon saturation is predicted

gluon saturation state reached

Non-linear QCD evolution equations introduced, but how is gluon saturation triggered?

- Can we determine experimentally the saturation scale (Q_S) ?
- Is there a state of matter formed by gluon saturated matter with universal properties?

Evolution of the hadronic structure with Bjorken-x and Q^2

- Experimental observables needed to map out the transition between the dilute and saturation regimes
- For nuclei, the saturation scale is enhanced by a A^{1/3} factor

$$(Q_s^A)^2 \approx cQ_0^2 \left[\frac{A}{x}\right]^{1/3}$$

Nuclear effects at low x not fully understood

$$R = rac{Ji/A}{Af_{i/p}} pprox rac{ ext{measured}}{ ext{expected if no nuclear effects}}$$

- Experimental observation that parton distributions are different for protons and nuclei
- What's the mechanism responsible for shadowing? How is gluon saturation related?
- The knowledge of the initial state of nuclei also needed for understanding the QGP evolution

DIS 2023

Daniel Tapia Takaki

March 30, 2023

The LHC as the Large Photon Collider

• <u>Ultra Peripheral Collisions (UPC)</u> can explore a wide range of energies using almost real photons

```
k = γM<sub>V</sub> exp(±y)
Up to several TeV in γp
Up to ~ 700 GeV/nucleon in γA
Up to ~ 150 GeV in γγ using UPC PbPb,
~ 4 TeV in in γγ using UPC pp
```

 UPCs at the LHC probe the hadronic structure over a broad and unique Bjorken x region, yet the precision not compatible to DIS machines like the EIC

$$x = M_V/\gamma m_p \exp(\pm y)$$

Interactions mediated by the EM interactions

Equivalent photon flux

Vector meson (VM) photoproduction in UPCs

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$
 Pb Pb Vector meson
$$W_{\gamma p}$$

- As in DIS, several reactions are possible in UPCs:
 - -Exclusive photoproduction
 - -Semi-exclusive photoproduction
 - -Inclusive photoproduction

- By studying various VMs, it is possible to probe the Q² dependence
- In the dipole approach, the light VMs (ϕ, ρ^0) are more sensitive to saturation because of the larger dipole, but pQCD methods not applicable

Predictions pre-LHC data for exclusive J/ψ off protons

1211.4831 [hep-ex]

- Deviations from the HERA power-law trend predicted as signatures of saturation
- At high energies also possible to distinguish among saturation models

Two-fold ambiguity on the photon direction in symmetric systems

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Symmetric systems (pp, A-A) suffer from the two-fold ambiguity on the photon direction

$$\frac{d\sigma}{dy} = \frac{\frac{\text{Positive rapidity}}{n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)}$$

Analyses of UPC asymmetric systems (p-Pb) provide <u>a model independent</u> way to study the energy dependence of $\sigma(\gamma p)$

First exclusive J/ ψ measurements by ALICE using Run 1 (2013)

- No change with respect to HERA power-law growth observed at low energies up to 700 GeV
 - UPC pPb collisions have no ambiguity on the photon energy

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

ALICE UPC results using Run 2 data

- Coherent J/ ψ photoproduction at forward rapidity in ultra-peripheral Pb–Pb collisions at \sqrt{s} = 5.02 TeV Phys. Lett. B798 (2019) 134926
- Coherent photoproduction of p0 vector mesons in ultra-peripheral Pb–Pb collisions at \sqrt{s} = 5.02 TeV JHEP 06 (2020) 035
- Coherent J/ ψ and ψ' photoproduction at midrapidity in ultra-peripheral Pb-Pb collisions at \sqrt{s} = 5.02 TeV Eur. Phys. J. C 81 (2021) 712
- First measurement of coherent p0 vector mesons in ultra-peripheral Xe–Xe collisions at \sqrt{s} = 5.44 TeV Phys. Lett B 820 (2021) 136481
- First measurement of the |t| dependence of coherent J/ ψ photonuclear production PLB 817 (2021) 136280
- Neutron emission in ultraperipheral Pb–Pb collisions at √s = 5.02 TeV arXiv:2209.04250. Accepted by PRC
 At DIS 2023, two new preliminary results presented:
 - More on the energy dependence of coherent J/ψ
 - t-dependence of incoherent J/ψ

Comprehensive UPC vector meson program at ALICE

See talk by N. Hamdi on light vector meson results

Confirmation of nuclear shadowing with Run 2 data

t-dependence only described by shadowing or gluon saturation model

- Confirmation of nuclear shadowing with Run 2 data
- No model can describe the rapidity dependence

$$W_{\gamma p}^2 = 2E_p M_{J/\psi} e^{\pm y}$$

Mid-rapidity $x \sim 10^{-3}$

Forward rapidity 95% at $x \sim 10^{-2}$ 5% at $x \sim 10^{-5}$

Nuclear suppression factor for UPC J/ ψ : Comparing γ Pb to γ p

An experimental definition, which can be linked to PDFs at LO

$$S_{Pb}(x) = \sqrt{\frac{\sigma_{\gamma A \to J/\psi A}(W_{\gamma p})}{\sigma_{\gamma A \to J/\psi A}^{\text{IA}}(W_{\gamma p})}} = \kappa_{A/N} \frac{xg_A(x, \mu^2)}{Axg_N(x, \mu^2)}$$

Run 1 data from ALICE was the first at indicating nuclear gluon shadowing at $x \sim 10^{-3}$

Large scale NLO uncertainties should cancel in the $S_{Pb}(x)$ ratio

ALICE results at y=0 have no ambiguity on the photon energy determination

Analysis using peripheral and UPC J/ψs

J.G. Contreras, Phys. Rev. C 96 (2017) 1, 015203

Run 1 data from ALICE observed coherent-like J/ψ from peripheral hadronic PbPb events. Process later confirmed by STAR

The photon flux depends on the impact parameter, these peripheral J/ψ explore γPb energies beyond coherent J/ψ at the same y interval at the same cms energy

15

Sensitivity to $x \sim 10^{-5}$

Energy dependence of coherent J/ ψ in γ Pb – ALICE Run 1 data

Compilation of published results based on ALICE Run 1 data, compared to current model calculations

Low x described by shadowing and saturation models

Sensitivity to $x \sim 10^{-5}$

Nuclear suppression factor – ALICE Run 1 data

Coherent J/ ψ in γ Pb

For x ~ 10⁻⁵ data favor both shadowing and saturation models

DIS 2023 Daniel Tapia Takaki

N

March 30, 2023

Neutron-dependence of coherent J/ψ in UPC Pb-Pb

The photon flux (n) depends on the impact parameter

Decomposed in terms of neutron configurations emitted in the forward region

$$\frac{d\sigma}{dy} = \frac{d\sigma(0\text{n0n})}{dy} + 2\frac{d\sigma(0\text{nXn})}{dy} + \frac{d\sigma(X\text{nXn})}{dy}$$

Solving the linear equations resolves the two-fold ambiguity for VMs at $y \neq 0$

$$\frac{d\sigma}{dy} = \frac{\text{Positive rapidity}}{n(+y)\sigma(\gamma p, +y) + n(-y)\sigma(\gamma p, -y)}$$

Guzey, Strikman, Zhalov, EPJC 74 (2014) 7, 2942

dσ/dy for different neutron configurations

Interesting on its own right

Sensitivity to test theoretical models

Energy dependence of coherent J/ ψ in γ Pb – ALICE Run 1 and Run 2 data

Confirmed Run 1 results. At low x, both shadowing and saturation models describe the data

Energy dependence across the whole range not described by models

In a single experiment exploring (20,800) GeV in $W_{\gamma Pb}$ and x from 10^{-2} to 10^{-5}

20

Nuclear suppression factor – ALICE Run 1 and Run 2 data

At low x, both shadowing and saturation models describe the data

Confirmation that peripheral hadronic events can be used to extract the energy dependence. Already explored down to $x = 4.4 \times 10^{-5}$ using Run 1 data

With the neutrondependent analysis using Run 2 data, down to $x = 1.1 \times 10^{-5}$, Run 2

Dissociative/incoherent J/ ψ in γp

H. Mantysaari and B. Schenke, Phys. Lett. B772 (2017) 832

In the Good-Walker approach, sensitive to subnucleonic fluctuations of the gluon density

x[fm]x[fm] $\frac{d\sigma(\gamma p \to J/\psi Y)}{dt} = \frac{R_g^2}{16\pi} \left(\left\langle \left| A(x, Q^2, \vec{\Delta}) \right|^2 \right\rangle - \left| \left\langle A(x, Q^2, \vec{\Delta}) \right\rangle \right|^2 \right\rangle$

J. Cepilia, J.G. Contreras and DTT Phys. Lett. B 766 (2017) 186-191

Event-by-event fluctuations

Daniel Tapia Takaki

March 30, 2023

94, 034042 (2016)

PRD

Mantysaari and Schenk, P S. Klein arXiv:2301.01401

t-dependence of incoherent J/ ψ cross section ratio in γ Pb

Data favor models with subnucleonic degrees of freedom (MS-hs and GSZ el+dis)

Probing for gluonic "hot spots" in Pb for the first time!

Summary

- ALICE has provided evidence of strong nuclear gluon effects since Run 1 Energy dependence of coherent J/ψ has been obtained using <u>four different</u> methods probing down to $x \sim 10^{-5}$ like no other LHC experiment. Preliminary results on the neutron-dependent studies were presented
- At the lowest x, data favor both shadowing and saturation models. At high x, no model can describe the data. Confirmation that coherent $J/\psi s$ in peripheral hadronic events contribute to this physics program
- First measurement of the t-dependence of incoherent J/ψ. <u>Data have strong</u> sensitivity for "gluonic hotspots" fluctuations in Pb
- Exciting program for Run 3: upgraded detectors and the trigger-less read out system. For Run 4, FoCal will be a superb detector for UPCs