

Vector meson photoproduction in UPCs with ALICE Forward Calorimeter Sasha Bylinkin The University of Bergen

March 27-31, 2023, DIS 2023, MSU, East Lansing, Michigan, USA

Outline

- Introduction
 - Ultra-Peripheral Collisions
 - ALICE FoCal Detector
 - Run 4 program and luminosity
- Prospects of UPC measurements with FoCal
 - A. Bylinkin, J. Nystrand and D. Tapia Takaki (2023) J. Phys. G https://doi.org/10.1088/1361-6471/acc419
- Summary

Photon induced processes in heavy ion collisions

- Nuclei "miss" each other (b > 2R)
- Electromagnetic interaction dominates over strong
- Photon flux grows with the square of the charge, Z²

Probes of nuclei in UPC

- UPCs at LHC: the most energetic photon-nuclei interactions
- Low-*x* physics and search for the nonlinear parton dynamics (saturation regime)

Exclusive vector meson photoproduction

• Photoproduction is sensitive to the gluon density at LO (NLO calculations are already available)

$$\frac{\sigma_{\gamma p,A \rightarrow V p,A}}{dt}\Big|_{t=0} = \frac{\alpha_s^2 \Gamma_{ee}}{3\alpha M_V^5} 16 \pi^3 [xG(x,Q^2)]^2$$

1 da

d

K.J. Eskola et. al Phys. Rev. C 106 (2022) 035202

$$\sigma_{\gamma p \to VMp} = \frac{1}{b} \frac{u \sigma_{\gamma p, A \to VM} p, A}{dt}|_{t=0} \quad Pb$$
P Energy of the γp collision
$$W_{\gamma p}^{2} = 2 \cdot E_{p} \cdot M_{VM} \cdot \exp(-y)$$

$$E_{p} - \text{ proton beam energy}$$

$$M_{VM} - \text{ mass of the vector meson}$$

$$y - \text{ rapidity of the vector meson}$$
P Probe gluon distributions in the proton at low- x

$$x = (M_{VM}/W_{\gamma p})^{2}$$
[p. Pb]

Measurements in the forward region are needed to probe lowest possible *x* values

Pb

 ρ^0 , **J**/ ψ , $\psi'(\mathbf{y}, \mathbf{p}_T^2)$

[p, Pb]

FoCal in ALICE Run 4

FoCal is a new high granularity calorimeter to be installed in the very forward region.

HP 2023: Talk by Tatsuya Chujo https://www.indico.uni-muenster.de/event/1409/contributions/2152/

3.4 < η < 5.8

Exclusive vector meson photoproduction with FoCal

- Energy of the γp collision
- Probe gluon distributions in the proton at low-*x*

 $\frac{d\sigma}{dy} = n(+y)\sigma(\gamma \mathbf{p}, +\mathbf{y}) + \mathbf{n}(-\mathbf{y})\sigma(\gamma \mathbf{p}, -\mathbf{y})$

• Two possible cases:

Pb → FoCal VM→ FoCal	p → FoCal VM→ FoCal
High energy γ	Low energy γ
Small photon flux	Large photon flux
Large Wyp	Small Wγp
Small <i>x</i>	Large <i>x</i>

- The same for PbPb collisions
 - Can be distinguished with the help of ZDCs

Projected statistics in Run 4

• VM $\rightarrow e^+ e^-$ from *STARlight* with both electrons reconstructed in the FoCal acceptance

VM	$\sigma(p + Pb \rightarrow p + Pb + VM)$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield	
		$\mathbf{p} \to \mathbf{FoCal}$	$\mathbf{p} \to \mathbf{FoCal}$	
ρ^0	35 mb	140 nb	21,000	
ϕ	$1.7 \mathrm{\ mb}$	51 nb	7,700	
${ m J}/\psi$	$98 \ \mu \mathrm{b}$	400 nb	60,000	
$\psi(2S)$	$16 \ \mu \mathrm{b}$	8.9 nb	$1,\!300$	
$\Upsilon(1S)$	220 nb	$0.38 \ \mathrm{nb}$	60	
		$Pb \rightarrow FoCal$	$Pb \rightarrow FoCal$	
ρ^0	35 mb	17 nb	2,600	
ϕ	$1.7 \mathrm{~mb}$	5.3 nb	800	
${ m J}/\psi$	$98~\mu{ m b}$	36 nb	$5,\!400$	
$\psi(2S)$	$16 \ \mu \mathrm{b}$	$0.53 \mathrm{~nb}$	80	
$\Upsilon(1S)$	220 nb	$0.67 \mathrm{\ pb}$	~ 0	

• 150 + 150 nb⁻¹ for p-Pb and Pb-p, respectively

We focus on J/ψ production in present studies

* 1 MHz interaction

rate considered

8

Measurement at unprecedentedly high energies will allow to distinguish between the theoretical models and significantly improve the precision

A J/ ψ detected in FoCal within 3.4 < y < 5.8: 1.1 < $W_{\gamma n}$ < 3.6 TeV, ↔ 8.10⁻⁶ > x > 7.10⁻⁷

Projection uncertainty:

Run 2 systematics (**15%**) + Projected statistics*(60% efficiency)

11

The MS model is used for the projection.

The proton-dissociative cross-sections are sensitive to the saturation

effects

$$W_{\gamma p} < 2.2 \text{ TeV}$$

(for at least 80 J/ ψ s)

J/ ψ cross-section in Pb-p: special Run? pPb special run @ $\sqrt{s} = 1.3$ TeV

Projected statistics in Run 4

- VM $\rightarrow e^+ e^-$ from *STARlight* with both electrons reconstructed in the FoCal acceptance
- 7 nb⁻¹ for Pb-Pb

VM	$\sigma(\mathrm{Pb} + \mathrm{Pb} \to \mathrm{Pb} + \mathrm{Pb} + \mathrm{VM})$	$\sigma(3.4 \le \eta_{1,2} \le 5.8)$	Yield
$-\rho^0$	5.0 b	$20 \ \mu \mathrm{b}$	140,000
ϕ	$440 \mathrm{~mb}$	$10 \ \mu \mathrm{b}$	$70,\!000$
${ m J}/\psi$	39 mb	$53~\mu{ m b}$	$360,\!000$
$\psi(2S)$	$7.5 { m ~mb}$	$1.1~\mu{ m b}$	7,500
$\Upsilon(1S)$	94 μb	5.0 nb	35

Precise mapping of the high-rapidity region where the interference term is important

16

Neutron dependence in PbPb

- Combined FoCal and ZDC analyses will allow to measure the neutron dependence and thus extract the photo-nuclear cross section as a function of $W_{\gamma Pb}$
- 7 nb⁻¹ for Pb-Pb

J/\u03c6 for different breakup scenarios

0n0n	28.8 mb	47 µb	329,000
0nXn	7.3 mb	5.0 μb	35,000
XnXn	3.0 mb	2.0 μb	14,000

Neutron dependence

 $d\sigma(\text{total})/dy = d\sigma(0\text{n}0\text{n})/dy + 2d\sigma(0\text{n}\text{Xn})/dy + d\sigma(\text{Xn}\text{Xn})/dy$

Vector meson is accompanied by at least one neutron on one side of the interaction point and no activity on the other side

Coherent J/ ψ in Pb-Pb

Extraction made using the SVD approach with 3 breakup scenarios

At least 80 J/ ψ -s in each rapidity bin and for each of the scenarios (0n0n, 0nXn, XnXn)

We considered 5%, 6% and 14% systematic uncertainties for the 0n0n, 0nXn and XnXn, respectively. Errors were propagated.

Summary

- Ultra-peripheral collisions with the FoCal are the energy frontier for photon physics probing gluon distributions at Bjorken-x of a few 10⁻⁶.
- FoCal electromagnetic calorimeter will allow to measure VM $\rightarrow e^+e^-$ decays
- FoCal provides a unique physics program to probe gluons saturation with J/ψ production in UPC Pb-p collisions: cross section, J/ψ to ψ ' ratio, dissociative production. (A. Bylinkin, J. Nystrand and D. Tapia Takaki (2023) J. Phys. G)
- Together with the rest of the ALICE detector, including the ZDCs, FoCal will be able to measure the J/ψ cross section in Pb-Pb collisions as a function of energy.
- FoCal can also contribute to many other UPC measurements like dijet production, $\gamma \gamma \rightarrow e^+ e^-$, near threshold J/ ψ production (in case of a special Run).

Thanks to my ALICE Colleagues for fruitful discussions.

Thank you very much for your attention!