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Diffractive scattering of particles

l l′

q

xPP

MX

P P ′

Inclusive lepton–proton diffractive scattering

Virtual photon γ∗ scatters off the
target without exchanging color-charge.

γ∗ remnants form a diffractive final
state of invariant mass MX .
A sizable gap between the outgoing
proton and diffractive systems is seen.
▶ Gap size ∆y ∼ log 1

xP
.

▶ xP =
xBj

β , β = Q2

Q2+M2
X

.

A substantial proportion (10 − 15%) of
all ep-collisions seen at HERA were
diffractive, whereas a simple QCD
expectation is that large-gap events
would be exponentially suppressed.a

aBjorken, Phys. Rev. D 47 (1993) 101
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Diffractive DIS in the Dipole Picture

Scattering amplitude squared of
leading order diffractive γ∗p scattering.
Produced color-singlet qq̄ pair forms
the diffractive state of invariant mass
MX at a large separation from the
outgoing target.

Inclusive diffractive cross section in the dipole picture is:

dσD
λ, qq̄

dM2
Xd|t|

=
Nc
4π

∫ 1

0
dz

∫
x0x1x̄0x̄1

I(2)
∆ I(2)

MX

∑
f

∑
h0,h1

(
ψ̃γ∗

λ
→q0̄q̄1̄

)†(
ψ̃γ∗

λ
→q0q̄1

)[
S†

0 1 − 1
][
S01 − 1

]
,

I(2)
MX

=
1

4πJ0 (
√
z0z1MX∥r̄ − r∥) , I(2)

∆ =
1

4πJ0

(√
|t|

∥∥∥∥b̄−b+(2z0−1)
2 (r̄−r)

∥∥∥∥)
.
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Observation of DDIS at HERA

Why was the LO dipole picture result insufficient to describe diffractive HERA data?

ZEUS 1994

F
2

D
(2

)

Q
2
=8 GeV

2
Q

2
=14 GeV

2

Q
2
=27 GeV

2

β

Q
2
=60 GeV

2

0.01

0.02

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

0.06

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Golec-Biernat, Wusthoff, Phys.Rev.D 60 (1999)

114023, hep-ph/9903358 [hep-ph]

Longitudinal qq̄ dominates FD
2 at β ∼ 1

Transverse qq̄ dominates FD
2 at β ∼ 0.5, i.e.

M2
X ∼ Q2

Transverse qq̄g becomes important at β → 0.

⇒ A number of pioneering analyses calculated the
qq̄g contribution to FD

T under varying assump-
tions or approximations. Bartels:1999, Kovchegov:1999, Ko-

peliovich:1999, Kovchegov:2001, Munier:2003, Golec-Biernat:2005, Wus-

thoff:1997, GolecBiernat:1999, GolecBiernat:2001
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The qq̄g-contribution at Next-to-Leading Order

Tree-level diagrams

ψ̃γ∗
λ

→q0q̄1g2 splitting wavefunction calculated in arXiv:1708.06557, arXiv:1711.08207
⇒ dσD ∼ M†M ∼ ψ̃†

γ∗
λ

→q0q̄1g2
ψ̃γ∗

λ
→q0q̄1g2

Constraint on final state MX makes these contributions finite by themselves
⇒ reasonable finite subset of the full NLO contribution that supersedes
approximative results in the literature.
New results involve full 3-particle phase space (x0, x1, x2, x0, x1, x2), final state
transfer functions I(3)

MX
, I(3)

∆ , and explicit squared splitting wavefunctions.
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3-particle final state phase space
Final state production phase does not care about the producing diagram.
▶ It is fully determined by the number of Fock state constituents.

Producing a final state of mass MX :

I(3)
MX

= 2z0z1z2
(4π)2

MX

Y012
J1 (MXY012) ,

with
Y2

012 = z0z1 (x0̄0 − x1̄1)
2 + z1z2 (x2̄2 − x1̄1)

2 + z0z2 (x2̄2 − x0̄0)
2 .

Momentum transfer dependence factorizes:

I(3)
∆ =

1
4πJ0

(√
−t∥z0x0̄0 + z1x1̄1 + z2x2̄2∥

)
.
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qq̄g-contribution: longitudinal (New)

xPF
D(4) NLO
L, qq̄g (xBj , Q2, β, t) = 4

αsNcCFQ4

β

∑
f

e2
f

∫ 1

0

dz0

z0

∫ 1

0

dz1

z1

∫ 1

0

dz2

z2
δ(z0+z1+z2−1)

×
∫

x0

∫
x1

∫
x2

∫
x0

∫
x1

∫
x2

I(3)
MX

I(3)
∆

4z0z1Q2K0 (QX012)K0
(

QX0 1 2

)
×

{
z2

1

[ (
2z0(z0 + z2) + z2

2
) (

x20

x2
20

·
(

x2 0
x2

2 0

−
1
2

x2 1
x2

2 1

)
−

1
2

x2 0 · x21

x2
2 0

x2
21

)
+

z2
2
2

(
x2 0 · x21

x2
2 0

x2
21

+
x20 · x2 1
x2

20x2
2 1

) ]
+ z2

0

[ (
2z1(z1 + z2) + z2

2
) (

x21

x2
21

·
(

x2 1
x2

2 1

−
1
2

x2 0
x2

2 0

)
−

1
2

x20 · x2 1
x2

20x2
2 1

)
+

z2
2
2

(
x2 0 · x21

x2
2 0

x2
21

+
x20 · x2 1
x2

20x2
2 1

) ]}
×

[
1 − S†

0 1 2

][
1 − S012

]
,

Not known previously in the literature.
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qq̄g-contribution: transverse (New)

xPF
D(4) NLO
T , qq̄g (xBj , Q2, β, t) = 2

αsNcCFQ4

β

∑
f

e2
f

∫ 1

0

dz0

z0

∫ 1

0

dz1

z1

∫ 1

0

dz2

z2
δ(z0+z1+z2−1)

∫
x0,x1,x2,
x0,x1,x2

I(3)
MX

I(3)
∆

×
z0z1Q2

X012X0 1 2
K1 (QX012)K1

(
QX0 1 2

) {
Υ(|b|2)

reg. + Υ(|c|2)
reg. + Υd

inst. + Υe
inst. + Υb×c

interf.

}[
1 − S†

0 1 2

][
1 − S012

]
,

Υ(|b|2 )
reg. =z

2
1

[
(2z0 (z0 + z2 ) + z

2
2 )(1 − 2z1 (1 − z1 ))

(
x

0 + 2;1
· x0+2;1

) (x
2 0

· x20 )

x2

2 0
x2

20

− z2 (2z0 + z2 )(2z1 − 1)

(
x

0 + 2;1
· x

2 0

)(
x0+2;1 · x20

)
−
(

x
0 + 2;1

· x20

)(
x0+2;1 · x

2 0

)
x2

2 0
x2

20

]
,

Υd
inst. =

z2
0 z2

1 z2
2

(z0 + z2 )2
−

z2
0 z3

1 z2

z0 + z2

(
x0+2;1 · x20

x2
20

+

x
0 + 2;1

· x
2 0

x2

2 0

)
+

z2
0 z1 (z1 + z2 )

2 z2

z0 + z2

(
x0;1+2 · x21

x2
21

+

x
0;1 + 2

· x
2 1

x2

2 1

)
,

Υb×c

interf.
= − z0 z1 [z1 (z0 + z2 ) + z0 (z1 + z2 )] [z0 (z0 + z2 ) + z1 (z1 + z2 )]

[(
x

0 + 2;1
· x0;1+2

) (x
2 0

· x21 )

x2

2 0
x2

21

+

(
x

0;1 + 2
· x0+2;1

) (x
2 1

· x20 )

x2

2 1
x2

20

]
+ z0 z1 z2 (z0 − z1 )

2

×
[(

x
0 + 2;1

· x
2 0

)(
x0;1+2 · x21

)
−
(

x
0 + 2;1

· x21

)(
x0;1+2 · x

2 0

)
x2

2 0
x2

21

+

(
x

0;1 + 2
· x

2 1

)(
x0+2;1 · x20

)
−
(

x
0;1 + 2

· x20

)(
x0+2;1 · x

2 1

)
x2

2 1
x2

20

]
,

with diags. b ↔ c and d ↔ e related by q ↔ q̄ exchange. First result derived in “exact eikonal kinematics”.
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Final state emissions contribute to qq̄g production

Tree-level diagrams that are not included in present results

The qq̄g final state can be produced as a final state emission of a gluon.
These must be included with the virtual corrections, as they contain a collinear
divergence, which is canceled by wavefunction renormalization.1

1The renormalization correction is also UV divergent which cancels against other 1-loop diagrams.
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Future work: 1-loop corrections

1-loop corrections needed for full NLO accuracy:

See talk by J. Penttala
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Recovering known results for F D
T

Our full NLO result for the qq̄g-contribution to FD
T should encompass previous dipole

picture results that have used various approximations:
▶ Large-MX , or equivalently small-β, limit2

▶ Large-Q2 limit3

2Inspirehep: Bartels:1999tn, Kovchegov:1999ji, Kopeliovich:1999am, Kovchegov:2001ni, Munier:2003zb, Golec-Biernat:2005prq
3Inspirehep: Wusthoff:1997fz, GolecBiernat:1999qd, GolecBiernat:2001mm
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Large-MX limit qq̄g-contribution

xPF
D (MS)
T ,qq̄g (xP,β = 0,Q2) =

αsNcCFQ
2

16π5αem

∫
d2x0

∫
d2x1

∫
d2x2

∫ 1

0

dz
z(1 − z)

∣∣∣ψ̃LO
γ∗

λ
→q0̄q̄1̄

∣∣∣2
× x2

01
x2

02x2
12

[
N02 +N12 −N01 −N02N12

]2

.

Originally derived at the soft gluon emission limit, i.e. z2 → 0.
Produces large M2

X ∼ 1
z2

.

We recover this exactly from the full result by:
▶ Approximate z2 → 0, simplifies NLO LCWF structure substantially.
▶ Eliminate cross-section MX dependence via

∫
dz2δ(M2

X − p2
2

z2
).

▶ Include final state gluon emission contribution to cancel out divergence caused by
approximations.
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Large-Q2 limit qq̄g-contribution

xPF
D (GBW)
T ,qq̄g

(
xP,β,Q2

)
=
αsβ

8π4

∑
f

e2
f

∫
d2b

∫ Q2

0
dk2

∫ 1

β
dz

k4 ln Q
2

k2

[(
1−β

z

)2
+

(
β

z

)2]

×
[ ∫ ∞

0
dr rdσ̃dip

d2b (b, r,xP)K2
(√
zkr

)
J2

(√
1 − zkr

)]2
,

Explicit large logQ2.
DGLAP g → qq̄ splitting function.
Postulated “effective gluon wavefunction” results in K2, J2.
Originally derived in a picture where:
▶ Color-singlet qq̄ too small to resolve: behaves as an “effective gluon”.
▶ Gluon dipole scattered off the target via a two-gluon exchange — later

phenomenologically replaced with the dipole scattering amplitude prescription.
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Recovering the large-Q2 limit

Making kinematic approximations requires a Fourier transform into momentum
space.
▶ Express light-cone wavefunctions using natural momenta, which are better compatible

with the approximations to be done.

Take the aligned jet limit in the full
qq̄g contribution:
▶ z0 ≫ z1 ≫ z2
▶ Q2 ≫ P2

qq̄ ≫ K2
gg̃ ≫ ∆2

▶ As qq̄-pair too small to resolve:
Pqq̄ not changed by the
shockwave.

▶ Integrate out 28 of 34 degrees of
freedom ⇒ complexity is
drastically reduced.

q+

z0q+

z1q+

z2q+

Pqq̄

Kgg̃

Pqq̄

K̂gg̃

M2
qq̄M2

qq̄g

M2
X
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Translating between different physical pictures

q+

z0q+

z1q+

z2q+

Pqq̄

Kgg̃

Pqq̄

K̂gg̃

M2
qq̄M2

qq̄g

M2
X

q

xPP − =
xBj

β
P −

zxPP − ≡ xBj

ξ
P −

xBjP −
xBjP −

(1 − ξ)zxPP −

(1 − z)xPP −

M2
qq̄

M2
X

Translate problem into minus-momentum parametrization by connecting the pictures
via invariant masses.
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Conclusions

The first NLO accuracy calculation of the qq̄g-contribution to FD
T ,L without

kinematical approximations, and first calculation of FD
L, qq̄g altogether.

As a verification, we recovered two well-known limiting results from the literature.
▶ Remarkably, the large-Q2 collinear factorization of FD

T was found to emerge from the
dipole picture. (a priori, dipole picture is valid in a different kinematical regime.)

▶ Explicit result for the large-Q2 qq̄g-contribution from first principles.
In the future:
▶ Calculation of all the 1-loop diagrams. (talk by J. Penttala)
▶ Numerical implementation of the qq̄g-contribution. (WIP)
▶ Global analysis of structure function and vector meson data in the dipole picture.

Thank you for your attention.
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dipole picture. (a priori, dipole picture is valid in a different kinematical regime.)

▶ Explicit result for the large-Q2 qq̄g-contribution from first principles.
In the future:
▶ Calculation of all the 1-loop diagrams. (talk by J. Penttala)
▶ Numerical implementation of the qq̄g-contribution. (WIP)
▶ Global analysis of structure function and vector meson data in the dipole picture.

Thank you for your attention.
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