Quark and gluon helicity evolution at small-x: Revised and updated

F. Cougoulic (USC, IGFAE)

In collaboration with Y. Kovchegov (OSU), A. Tarasov (NC State), Y. Tawabutr (JYU)

DIS 2023 - March, 2023

Overview

Part 1: Proton spin puzzle

- 19 May 1988
- Theoretical prediction in the 70 's
- The missing spin of the proton?

Part 2: Quark flavor-singlet helicity distribution

- Generalities
- Initial framework
- Let's do it again, new dipoles

Part 1: Proton spin puzzle

Proton spin puzzle / crisis.

The spin asymmetry in deep inelastic scattering of longitudinally polarised muons by longitudinally polarised protons has been measured over a large x range $(0.01<x<0.7)$. The spin-dependent structure function $g_{1}(x)$ for the proton has been determined and its integral over x found to be $0.114 \pm 0.012 \pm 0.026$, in disagreement with the Ellis-Jaffe sum rule. Assuming the validity of the Bjorken sum rule, this result implies a significant negative value for the integral of g_{i} for the neutron. These values for the integrals of g_{1} lead to the conclusion that the total quark spin constitutes a rather small fraction of the spin of the nucleon.

Reminder

$$
\begin{equation*}
g_{1}^{\gamma}=\frac{1}{2} \sum_{q} e_{q}^{2}(\Delta q+\Delta \bar{q}), \quad \Delta q=q^{\uparrow}-q^{\downarrow} \text { w.r.t. the proton spin } \tag{1}
\end{equation*}
$$

and they observed for the proton

$$
\begin{equation*}
\int_{0.01}^{0.7} g_{1}(x) \mathrm{d} x=0.114 \pm 0.012 \text { (stat.) } \pm 0.026 \text { (syst.) } \tag{2}
\end{equation*}
$$

Remarks

- In blue: finite range of integration. "... the small x region is expected to make a large contribution to the integrals."
- In red: Ellis-Jaffe sum rule. \rightarrow Theoretical understanding of the 70's.

Theoretical prediction in the $70^{\prime} \mathrm{s}$
\rightarrow How do we understand this value? 0.114 ± 0.012 (stat.) ± 0.026 (syst.)

Ellis-Jaffe sum rule, assumptions

- Sea $q \bar{q}: \lambda^{+}(x) \simeq \lambda^{-}(x) \simeq \bar{\lambda}^{+}(x) \simeq \bar{\lambda}^{-}(x)$
- Ansatz $\Delta s \sim 0$ (no intrinsic strangeness)
- Belief that valence quarks carry the proton spin.

$$
\begin{align*}
& \text { we obtain }^{11} \\
& \qquad \int_{0}^{1} d \xi g_{1}^{e p}(\xi)=\frac{g_{A}}{12}(1.78) \tag{6}\\
& \qquad \int_{0}^{1} d \xi g_{1}^{e n}(\xi)=\frac{g_{A}}{12}(-0.22), \tag{7}\\
& \text { where } g_{A}=1.248 \pm .010
\end{align*}
$$

Ellis-Jaffe sum rule prediction (70’s): $0.185 \pm 0.0015 \longrightarrow \underline{\text { Not compatible with } 0.114}$

Where is the missing spin ?

Old fundamental problem $(\sim 30 y) \rightarrow$ looking at small number adding up to $1 / 2$.

- There are progresses \rightarrow Still don't understand the spin of the proton in term of QCD dof.

The missing spin of the proton?

A more recent picture of the proton spin.

Spin sum rule (Jaffe Manohar decomposition [Nucl. Phys. B337, 509 (1990)])

Possibilities:

- Gluon spin?
- Quark and/or Gluon angular orbital momentum (OAM)?

Large and low x region. Experiments only access a finite range of $x \ldots$

$$
\begin{equation*}
\Sigma_{q}=\int_{0}^{1} \mathrm{~d} x\left(q^{\uparrow}(x)-q^{\downarrow}(x)\right) \tag{3}
\end{equation*}
$$

Possibilities

- Large-x?
- Small-x?

Part 2: Quark flavor-singlet helicity distribution

Comments on the framework $(1 / 3)$

Using Ic coordinates $a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)$
Frame choice: \rightarrow Probe minus-moving, target plus-moving.

- Aim: Contribution to the spin using small-x asymptotic.
\longrightarrow Evolution in rapidity.
- Approach: Take a TMD, \longrightarrow Simplify / Evolve / Solve.
- Equations in the spirit of BK-evolution. Initiated by [Kovchegov, Pitonyak, and Sievert].
Rmk: \exists other frameworks for g_{1} at small-x, such as Bartel, Ermolaev, and Ryskin [BER] - (1996).

Def: Wilson Lines for any irreducible representation (irrep) are

$$
\begin{equation*}
W_{\underline{x}}^{(R)}\left[b^{-}, a^{-}\right] \equiv \mathrm{P} \exp \left\{i g \int_{a^{-}}^{b^{-}} d x^{-} t_{R}^{a} A^{+} a\left(x^{+}=0, x^{-}, \underline{x}\right)\right\} . \tag{4}
\end{equation*}
$$

\Rightarrow Depends only on the background field A^{+}(Lorentz Gauge).
Notation: we use V for fundamental WL , and U for adjoint WL .

Comments on the framework (2/3)
Yuri's (and al.) approach "Simplify, Evolve, and Solve"
[Y.V Kovchegov, D. Pitonyak, and M. D. Sievert 2016 2017] [Y.V Kovchegov, and M. D. Sievert 2018]

Evolve

Small-x Kernel

Small-x Intercept

Mixed space:

- $z \equiv k^{+} / P^{+}$
- $\underline{x}=\mathbf{x}=\vec{x}_{\perp}$

Fourier phase

- $e^{-i \underline{k} \cdot(\underline{\zeta}-\underline{y})}$

Dipole model

- Splitting factor $\underline{x} / \underline{x}^{2}$

Helicity distributions (flavor-singlet)

$$
\begin{equation*}
g_{1 L}^{S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c}}{(2 \pi)^{6}} \int d^{2} \underline{\zeta} d^{2} \underline{w} d^{2} \underline{y} e^{-i \underline{k} \cdot(\underline{\zeta}-\underline{y})} \int_{\Lambda^{2} / s}^{1} \frac{d z}{z} \frac{\underline{\zeta}-\underline{w}}{|\underline{\zeta}-\underline{w}|^{2}} \cdot \frac{\underline{y}-\underline{w}}{|\underline{y}-\underline{w}|^{2}} G_{\underline{w}, \underline{\zeta}}(z s) \tag{5}
\end{equation*}
$$

where

$$
G_{\underline{w}, \underline{\zeta}}(z s)=\frac{k_{1}^{-} p^{+}}{N_{c}} \operatorname{Re}\left\langle\operatorname{Ttr}\left[V_{\underline{\zeta}} V_{\underline{w}}^{p o l \dagger}\right]+\mathrm{T} \operatorname{tr}\left[\begin{array}{ll}
V_{\underline{w}}^{p o l} & V_{\underline{\zeta}}^{\dagger} \tag{6}
\end{array}\right]\right\rangle
$$

Think of it as a regular dipole amplitude (for the moment) \longrightarrow to be evolved.

Comments on the framework (3/3) - Propagator and Shockwave

Recipe:

- Split the background field A^{μ} into a new background A^{μ} and a quantum field a^{μ}.
- Integrate out quantum fields a^{μ}.
- Require the propagator in the new background. Use shockwave approximation.
- Pull out the corresponding kernel for one step of evolution.

Remarks

- In our case, we go beyond eikonal approximation since helicity-dependence is a genuine subeikonal effect.
- Introduce Wilson line and polarized Wilson lines, up to subeikonal level.
- Splitting field w.r.t. to their longitudinal momentum fraction.
\triangle Different from genuine Born-Oppenheimer, that would be w.r.t. frequency or loffe time.

Situation prior to this contribution (1/3)

Consider the quark helicity TMD [Kovchegov et al. 2018]

$$
\begin{equation*}
g_{1 L}^{q}\left(x, k_{T}^{2}\right)=\frac{1}{(2 \pi)^{3}} \frac{1}{2} \sum_{S_{L}} S_{L} \int \mathrm{~d}^{2} \underline{r} d r^{-} e^{i k \cdot r}\left\langle p, S_{L}\right| \bar{\psi}(0) U[0, r] \frac{\gamma^{+} \gamma^{5}}{2} \psi(r)\left|p, S_{L}\right\rangle \tag{7}
\end{equation*}
$$

- Gauge-link $U[0, r]$ is process dependent, SIDIS \rightarrow forward staple.
- Simplify at small-x, remaining diagram is B.

After some algebra...

$$
\begin{align*}
g_{1 L}^{q}\left(x, k_{T}^{2}\right) & =-\frac{2 p^{+}}{(2 \pi)^{3}} \int \mathrm{~d}^{2} \zeta \mathrm{~d}^{2} w \frac{\mathrm{~d}^{2} k_{1} d k_{1}^{-}}{(2 \pi)^{3}} e^{i\left(\underline{k_{1}}+\underline{k}\right) \cdot(\underline{w}-\underline{\zeta})} \theta\left(k_{1}^{-}\right) \sum_{\sigma_{1}, \sigma_{2}} \\
& \times \bar{v}_{\sigma_{2}}\left(k_{2}\right) \frac{1}{2} \gamma^{+} \gamma^{5} v_{\sigma_{1}}\left(k_{1}\right) 2 \sqrt{k_{1}^{-} k_{2}^{-}} \times\left\langle\mathrm{T} V_{\underline{\xi}}^{i j}\left(\bar{v}_{\sigma_{1}}\left(k_{1}\right) \hat{V}_{\underline{w}}^{\dagger j i} v_{\sigma_{2}}\left(k_{2}\right)\right)\right\rangle \\
& \times\left.\frac{1}{\left[2 k_{1}^{-} x P^{+}+\underline{k}_{1}-i \epsilon k_{1}^{-}\right]\left[2 k_{1}^{-} x P^{+}+\underline{k}^{2}+i \epsilon k_{1}^{-}\right]}\right|_{k_{2}^{-}=k_{1}^{-}, \underline{k}_{2}=-\underline{k}}+c . c . \tag{8}
\end{align*}
$$

Situation prior to this contribution (2/3)

The previous green operator reads

$$
\begin{equation*}
\left(\bar{v}_{\sigma}(p) \hat{V}_{\underline{\underline{x}}}^{\dagger} v_{\sigma^{\prime}}\left(p^{\prime}\right)\right)=2 \sqrt{p^{-} p^{\prime-}} \delta_{\sigma \sigma^{\prime}}\left(V_{\underline{\underline{x}}}^{\dagger}-\sigma V_{\underline{\underline{x}}}^{\text {pol } \dagger}+\cdots\right) . \tag{9}
\end{equation*}
$$

Recall the flavor-singlet contribution simplified at small- x gives

$$
\begin{equation*}
g_{1 L}^{S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c} i}{(2 \pi)^{5}} \int \mathrm{~d}^{2} \zeta \mathrm{~d}^{2} \underline{w} e^{-i \underline{k} \cdot(\underline{\zeta}-\underline{w})} \int_{\Lambda^{2} / s}^{1} \frac{d z}{z} \frac{\underline{\zeta}-\underline{w}}{\left.(\underline{\zeta}-\underline{w})^{2}\right)} \cdot \frac{\underline{k}}{\underline{k}^{2}} G_{\underline{w}, \underline{y}}(z s) . \tag{10}
\end{equation*}
$$

The dipole operator $G_{\underline{w}, \underline{y}}(z s)$ is

$$
\begin{equation*}
G_{\underline{w}, \underline{y}}(z s)=\frac{k_{1}^{-} p^{+}}{N_{c}} \operatorname{Re}\left\langle\operatorname{T} \operatorname{tr}\left[V_{\underline{x}} V_{\underline{w}}^{p o l \dagger}\right]+\operatorname{T} \operatorname{tr}\left[V_{\underline{w}}^{p o l} V_{\underline{x}}^{\dagger}\right]\right\rangle, \tag{11}
\end{equation*}
$$

where the polarized Wilson line reads

$$
\begin{align*}
V_{\underline{x}}^{p o l} & =i g \frac{p^{+}}{s} \int d x^{-} V_{\underline{x}}\left[\infty, x^{-}\right] F^{12} V_{\underline{x}}\left[x^{-},-\infty\right] \tag{12}\\
& -g^{2} \frac{p^{+}}{s} \int d x_{1}^{-} \int_{x_{1}^{-}} d x_{2}^{-} V_{\underline{x}}\left[\infty, x_{2}^{-}\right] t^{b} \psi_{\beta}\left(x_{2}^{-}, \underline{x} U_{\underline{x}}^{b a}\left[x_{2}^{-}, x_{1}^{-}\right]\left[\frac{1}{2} \gamma^{+} \gamma^{5}\right]_{\alpha \beta} \bar{\psi}_{\alpha}\left(x_{1}^{-}, \underline{x}\right) t^{a} V_{\underline{x}}\left[x_{1}^{-},-\infty\right] .\right.
\end{align*}
$$

Situation prior to this contribution (3/3)

Remarks

- "Dressed dipoles" involve polarized WL. Obtained as sub-eikonal corrections to the scattering of a quark on a target.
- Corrections are proportional to $\sigma \delta_{\sigma \sigma^{\prime}}$ in helicity basis (Brodsky-Lepage spinors in the minus direction).
Evolution (DLA, Involves the same WL at different coordinates $\longrightarrow \sigma \delta_{\sigma \sigma^{\prime}}$)

Solve
Intercept in the pure glue case is $\Delta \Sigma \sim \Delta G \sim g_{1} \sim(1 / x)^{\alpha_{h}^{q}}$ with $\alpha_{h} \sim 2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$.
x Disagreement with BER pure glue intercept $\alpha_{h} \sim 3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$

Quark flavor-singlet helicity TMD - New dipole (1/2)

Let us start again from the quark helicity TMD: [2004.11898]

$$
\begin{align*}
g_{1 L}^{q}\left(x, k_{T}^{2}\right) & =-\frac{2 p^{+}}{(2 \pi)^{3}} \int \mathrm{~d}^{2} \zeta \mathrm{~d}^{2} w \mathrm{~d}^{2} z \frac{\mathrm{~d}^{2} k d k^{-}}{(2 \pi)^{3}} e^{i \underline{k}_{1} \cdot(\underline{w}-\underline{\zeta})+i \underline{k} \cdot(\underline{z}-\zeta)} \theta\left(k_{1}^{-}\right) \sum_{\sigma_{1}, \sigma_{2}} \\
& \times \bar{v}_{\sigma_{2}}\left(k_{2}\right) \frac{1}{2} \gamma^{+} \gamma^{5} v_{\sigma_{1}}\left(k_{1}\right) 2 \sqrt{k_{1}^{-} k_{2}^{-}} \times\left\langle\operatorname{Ttr}\left[V_{\underline{\zeta}} V_{\left.\underline{z}, \underline{w} ; \sigma_{2}, \sigma_{1}\right]}^{\dagger}\right\rangle\right. \\
& \times\left.\frac{1}{\left[2 k_{1}^{-} x P^{+}+\underline{k}_{1}-i \epsilon k_{1}^{-}\right]\left[2 k_{1}^{-} x P^{+}+\underline{k}^{2}+i \epsilon k_{1}^{-}\right]}\right|_{k_{2}^{-}=k_{1}^{-}, \underline{k}_{2}=-\underline{k}}+c . c . \tag{13}
\end{align*}
$$

Remarks

 quark-target scattering in helicity-basis.

- Allows for non locality before and after the shock wave.

Wilson lines and eikonal expansion

At sub-eikonal order:

$$
\begin{align*}
& V_{\underline{x}, \underline{y} ; \sigma^{\prime}, \sigma}=V_{\underline{x}} \delta^{2}(\underline{x}-\underline{y}) \delta_{\sigma, \sigma^{\prime}} \tag{14}\\
& +\frac{i P^{+}}{s} \int_{-\infty}^{\infty} d z^{-} d^{2} z V_{\underline{x}}\left[\infty, z^{-}\right] \delta^{2}(\underline{x}-\underline{z})\left[-\delta_{\sigma, \sigma^{\prime}} \overleftarrow{D}^{i} D^{i}+g \sigma \delta_{\sigma, \sigma^{\prime}} F^{12}\right]\left(z^{-}, \underline{z}\right) V_{\underline{y}}\left[z^{-},-\infty\right] \delta^{2}(\underline{y}-\underline{z}) \\
& -\frac{g^{2} P^{+}}{2 s} \delta^{2}(\underline{x}-\underline{y}) \int_{-\infty}^{\infty} d z_{1}^{-} \int_{z_{1}^{-}}^{\infty} d z_{2}^{-} V_{\underline{x}}\left[\infty, z_{2}^{-}\right] t^{b} \psi_{\beta}\left(z_{2}^{-}, \underline{x}\right) U_{\underline{x}}^{b a}\left[z_{2}^{-}, z_{1}^{-}\right]\left[\delta_{\sigma, \sigma^{\prime}} \gamma^{+}-\sigma \delta_{\sigma, \sigma^{\prime}} \gamma^{+} \gamma^{5}\right]_{\alpha \beta} \\
& \quad \times \bar{\psi}_{\alpha}\left(z_{1}^{-}, \underline{x}\right) t^{a} V_{\underline{x}}\left[z_{1}^{-},-\infty\right],
\end{align*}
$$

Remarks

- Blue \longrightarrow Already used in previous $V^{\text {pol }}$. Label of the first kind; notation $V^{\text {pol }[1]}$. Proportional to $\sigma \delta_{\sigma \sigma^{\prime}}$.
- Red \longrightarrow "NEW" (in our framework). Label of the second kind; notation $V^{\text {pol [2] }}$. Proportional to $\delta_{\sigma \sigma^{\prime}}$.

For the quark S-matrix at sub eikonal order, see also:

- Balitsky and Tarasov, e.g. [1505.02151]
- Chirilli, e.g. [1807.11435]
- Altinoluk et al., e.g. [2012.03886]
- Kovchegov et al., e.g. [1808.09010] [2108.03667]

Wilson lines and eikonal expansion - Pictures!

Polarized WL,

$$
V_{\underline{x}}^{\mathrm{pol}[1]}=\underbrace{V_{\underline{x}}^{\mathrm{G}[1]}+V_{\underline{x}}^{\mathrm{q}[1]}}_{\sigma \delta_{\sigma \sigma^{\prime}}}, \quad V_{\underline{x}, \underline{y}}^{\mathrm{pol}[2]}=\underbrace{V_{\underline{x}, \underline{y}}^{\mathrm{G}[2]}+V_{\underline{x}}^{\mathrm{q}[2]} \delta^{2}(\underline{x}-\underline{y})}_{\delta_{\sigma \sigma^{\prime}}} .
$$

can be represented as

Contraction with $\left(\gamma^{+} \gamma^{5}\right)_{\alpha \beta} \times \sigma \delta_{\sigma \sigma^{\prime}}$ or $\gamma_{\alpha \beta}^{+} \times \delta_{\sigma \sigma^{\prime}}$

Quark flavor-singlet helicity TMD - New dipole (2/2)
Simplified at small- x, the quark flavor-singlet helicity TMD reads

$$
\begin{array}{r}
g_{1 L}^{S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c} N_{f}}{(2 \pi)^{5}} \int_{\Lambda^{2} / s}^{1} \frac{d z}{z} \int d^{2} x_{10} e^{i \underline{k} \cdot \underline{x}_{10}}\left[i \frac{\underline{x}_{10}}{x_{10}^{2} \cdot \frac{\underline{k}}{\underline{k}^{2}}}\left[Q\left(x_{10}^{2}, z s\right)+G_{2}\left(x_{10}^{2}, z s\right)\right]\right. \\
 \tag{15}\\
\left.-\frac{\left(\underline{k} \times \underline{x}_{10}\right)^{2}}{\underline{k}^{2} x_{10}^{2}} G_{2}\left(x_{10}^{2}, z s\right)\right],
\end{array}
$$

The new dipole G_{2} is defined with

$$
\begin{gather*}
G_{10}^{j}(z s) \equiv \frac{1}{2 N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{\underline{\zeta}}^{\dagger} V_{\underline{\xi}}^{j \mathrm{G}[2]}+\left(V_{\underline{\xi}}^{j \mathrm{G}[2]}\right)^{\dagger} V_{\underline{\zeta}}\right]\right\rangle\right\rangle \tag{16}\\
\int d^{2}\left(\frac{x_{1}+x_{0}}{2}\right) G_{10}^{i}(z s)=\left(x_{10}\right)_{\perp}^{i} G_{1}\left(x_{10}^{2}, z s\right)+\epsilon^{i j}\left(x_{10}\right)_{\perp}^{j} G_{2}\left(x_{10}^{2}, z s\right) . \tag{17}
\end{gather*}
$$

Remarks

- Dependence on previously used dipole $Q\left(x_{10}^{2}, z s\right)$.
- The previously missing dependence is proportional to $G_{2}\left(x_{10}^{2}, z s\right)$.
- New contribution depends on the sub-eikonal operator $\overleftrightarrow{\underline{D}}$, related to the Jaffe-Manohar polarized gluon distribution.

Evolution, revised and updated

One step of evolution reads the formal form

$$
\begin{equation*}
\hat{\mathcal{O}}_{i}=\hat{\mathcal{O}}_{i}^{(0)}+\sum_{j} \mathcal{K}_{i j} \otimes \hat{\mathcal{O}}_{j} \tag{18}
\end{equation*}
$$

- Mixing of operators involving Wilson lines of first and/or second kind.
- Evolution written with an integral kernel. It involves transverse and longitudinal logarithms. The evolution is DLA, as opposed to the unpolarized one being SLA.
- Lifetime ordering is explicit $\theta\left(z \underline{x}_{10}^{2}-z^{\prime} \underline{x}_{21}^{2}\right)$.
- Similar to the Balitsky hierarchy, equation are not closed.
- Can be closed in the 't Hooft large N_{c}-limit or Veneziano large $N_{c} \& N_{f}$-limit.

Results

- In the pure glue sector, the intercept becomes $\alpha_{h} \sim 3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$. In complete agreement with BER result.
- Iterating this kernel, one recover the small- x spin-dependent DGLAP kernel.

Evolution, revised and updated - What is really looks like... Type 1

$$
\downarrow \quad \text { c.c. } \quad=\quad \text { inhomogeneous }
$$

 + other eikonal diagrams c.c.

$$
\begin{equation*}
\frac{1}{2 N_{c}}\left\langle\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1] \dagger}\right]+\text { c.c. }\right\rangle\right\rangle(z s)=\frac{1}{2 N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1] \dagger}\right]+\text { c.c. }\right\rangle\right\rangle_{0}(z s)\right. \tag{95}
\end{equation*}
$$

$$
+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int d^{2} x_{2}\left\{[\frac { 1 } { x _ { 2 1 } ^ { 2 } } - \frac { \underline { x } _ { 2 1 } } { x _ { 2 1 } ^ { 2 } } \cdot \frac { \underline { x } _ { 2 0 } } { x _ { 2 0 } ^ { 2 } }] \frac { 1 } { N _ { c } ^ { 2 } } \left\langle\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{1}}^{\dagger}\right]\left(U_{\underline{2}}^{\mathrm{pol}[1]}\right)^{b a}+\text { c.c. }\right\rangle\right\rangle\left(z^{\prime} s\right)\right.\right.
$$

$$
+\left[2 \frac{\epsilon^{i j} x_{21}^{j}}{x_{21}^{4}}-\frac{\epsilon^{i j}\left(x_{20}^{j}+x_{21}^{j}\right)}{x_{20}^{2} x_{21}^{2}}-\frac{2 \underline{x}_{20} \times \underline{x}_{21}}{x_{20}^{2} x_{21}^{2}}\left(\frac{x_{21}^{i}}{x_{21}^{2}}-\frac{x_{20}^{i}}{x_{20}^{2}}\right)\right] \frac{1}{N_{c}^{2}}\left\langle\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{1}}^{\dagger}\right]\left(U_{\underline{2}}^{i \mathrm{G}[2]}\right)^{b a}+\text { c.c. }\right\rangle\right\rangle\left(z^{\prime} s\right)\right\}
$$

$$
\left.+\frac{\alpha_{s} N_{c}}{4 \pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int \frac{d^{2} x_{2}}{x_{21}^{2}}\left\{\frac{1}{N_{c}^{2}}\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{2}}^{\mathrm{pol}[1] \dagger}\right] U_{\underline{1}}^{b a}\right\rangle\right\rangle\left(z^{\prime} s\right)\right]+2 \frac{\epsilon^{i j} \underline{x}_{21}^{j}}{x_{21}^{2}} \frac{1}{N_{c}^{2}}\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{2}}^{i \mathrm{G}[2] \dagger}\right] U_{\underline{1}}^{b a}\right\rangle\right\rangle\left(z^{\prime} s\right)+\text { c.c. }\right\}
$$

$$
\left.+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int d^{2} x_{2} \frac{x_{10}^{2}}{x_{21}^{2} x_{20}^{2}}\left\{\frac{1}{N_{c}^{2}}\left\langle\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{1}}^{\mathrm{pol}[1] \dagger}\right] U_{\underline{2}}^{b a}\right\rangle\right\rangle\left(z^{\prime} s\right)\right]-\frac{C_{F}}{N_{c}^{2}}\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{\mathrm{pol}[1] \dagger}\right]\right\rangle\right\rangle\left(z^{\prime} s\right)\right]+\text { c.c. }\right\} .
$$

Evolution, revised and updated - What is really looks like... Type 2

+ other eikonal diagrams + c.c.

$$
\begin{equation*}
\frac{1}{2 N_{c}}\left\langle\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{i \mathrm{G}[2] \dagger}\right]+\text { c.c. }\right\rangle\right\rangle(z s)=\frac{1}{2 N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{i \mathrm{G}[2] \dagger}\right]+\text { c.c. }\right\rangle\right\rangle_{0}(z s)\right. \tag{106}
\end{equation*}
$$

$$
+\frac{\alpha_{s} N_{c}}{4 \pi^{2}} \int_{\frac{\Lambda^{2}}{\sigma}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int d^{2} x_{2}\left\{[\frac { \epsilon ^ { i j } x _ { 2 1 } ^ { j } } { x _ { 2 1 } ^ { 2 } } - \frac { \epsilon ^ { i j } x _ { 2 0 } ^ { j } } { x _ { 2 0 } ^ { 2 } } + 2 x _ { 2 1 } ^ { i } \frac { \underline { x } _ { 2 1 } \times \underline { x } _ { 2 0 } } { x _ { 2 1 } ^ { 2 } x _ { 2 0 } ^ { 2 } }] \frac { 1 } { N _ { c } ^ { 2 } } \left[\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{Q_{2}}} t^{a} V_{\underline{1}}^{\dagger}\right]\left(U_{\underline{2}}^{\mathrm{pol}[1]}\right)^{b a}+\text { c.c. }\right\rangle\right\rangle\left(z^{\prime} s\right)\right.\right.
$$

$$
+\left[\delta^{i j}\left(\frac{3}{x_{21}^{2}}-2 \frac{\underline{x}_{20} \cdot \underline{x}_{21}}{x_{20}^{2} x_{21}^{2}}-\frac{1}{x_{20}^{2}}\right)-2 \frac{x_{21}^{i} x_{20}^{j}}{x_{21}^{2} x_{20}^{2}}\left(2 \frac{\underline{x}_{20} \cdot \underline{x}_{21}}{x_{20}^{2}}+1\right)+2 \frac{x_{21}^{i} x_{21}^{j}}{x_{21}^{2} x_{20}^{2}}\left(2 \frac{\underline{x}_{20} \cdot \underline{x}_{21}}{x_{21}^{2}}+1\right)+2 \frac{x_{20}^{i} x_{20}^{j}}{x_{20}^{4}}-2 \frac{x_{21}^{i} x_{21}^{j}}{x_{21}^{4}}\right]
$$

$$
\left.\times \frac{1}{N_{c}^{2}}\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{1}}^{\dagger}\right]\left(U_{\underline{2}}^{j \mathrm{G}[2]}\right)^{b a}+\text { c.c. }\right\rangle\right\rangle\left(z^{\prime} s\right)\right\}
$$

$$
+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int d^{2} x_{2} \frac{x_{10}^{2}}{x_{21}^{2} x_{20}^{2}}\left\{\frac { 1 } { N _ { c } ^ { 2 } } \left\langle\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{\underline{0}} t^{a} V_{\underline{1}}^{i \mathrm{G}[2] \dagger}\right]\left(U_{\underline{2}}\right)^{b a}\right\rangle\right\rangle\left(z^{\prime} s\right)-\frac{C_{F}}{N_{c}^{2}}\left[\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{i \mathrm{G}[2] \dagger]}\right\rangle\right\rangle\left(z^{\prime} s\right)+\text { c.c. }\right\}\right.\right.\right.
$$

A very last slide

A quick conclusion

- Small-x evolution equations for helicity distributions at DLA.
- Involve the new dipole G_{2} operator.
- Numerical agreement with the intercept found by BER: $(1 / x)^{3.66 \sqrt{\alpha_{s} N_{c} / 2 \pi}}$.

Some Prospects

- On other contributions in the spin decomposition [talk on OAM by B. Manley]
- About the numerical agreement [talk on analytic solution by J. Borden]
- On the phenomenology using the JAM framework. [talk on data analysis by D. Adamiak]
- Solving those equation in the Veneziano limit (oscillations?).
- Going beyond the DLA limit. Resumming IR-log, and thus interfacing with full spin-dependent DGLAP.
- Fixing helicity-JIMWLK.

Extra

- Gluon helicity and Lipatov vertex
- Large N_{c} limit
- TMD's
- g_{1}
- Recovering small-x Pol DGALP

Gluon helicity

From the Jaffe-Manohar (JM) gluon helicity PDF

$$
\begin{align*}
\Delta G\left(x, Q^{2}\right)=\int^{Q^{2}} d^{2} k g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-2 i}{x P^{+}} \frac{1}{4 \pi} \frac{1}{2} \sum_{S_{L}} S_{L} \int_{-\infty}^{\infty} d \xi^{-} e^{i x P^{+} \xi^{-}} \\
\quad \times\left\langle P, S_{L}\right| \epsilon^{i j} F^{a+i}\left(0^{+}, 0^{-}, \underline{0}\right) U_{\underline{0}}^{a b}\left[0, \xi^{-}\right] F^{b+j}\left(0^{+}, \xi^{-}, \underline{0}\right)\left|P, S_{L}\right\rangle \tag{19}
\end{align*}
$$

Identify after some algebra the dipole gluon helicity TMD

$$
\begin{equation*}
g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-2 i}{x P^{+} V^{-}} \frac{1}{(2 \pi)^{3}} \frac{1}{2} \sum_{S_{L}} S_{L}\left\langle P, S_{L}\right| \epsilon^{i j} \operatorname{tr}\left[L^{i \dagger}(x, \underline{k}) L^{j}(x, \underline{k})\right]\left|P, S_{L}\right\rangle \tag{20}
\end{equation*}
$$

where we define the Lipatov vertex:

$$
\begin{equation*}
L^{j}(x, \underline{k}) \equiv \int_{-\infty}^{\infty} d \xi^{-} d^{2} \xi e^{i x P^{+} \xi^{-}-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}\left[\infty, \xi^{-}\right]\left(\partial^{j} A^{+}+i x P^{+} A^{j}\right) V_{\underline{\xi}}\left[\xi^{-},-\infty\right] \tag{21}
\end{equation*}
$$

Gluon helicity

Expanding the Lipatov vertex in eikonality (i.e. Bjorken x)

$$
\begin{equation*}
L^{j}(x, \underline{k})=\int_{-\infty}^{\infty} d \xi^{-} d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}\left[\infty, \xi^{-}\right]\left[\partial^{j} A^{+}+i x P^{+}\left(\xi^{-} \partial^{j} A^{+}+A^{j}\right)+\mathcal{O}\left(x^{2}\right)\right] V_{\underline{\xi}}\left[\xi^{-},-\infty\right], \tag{22}
\end{equation*}
$$

which we can write

$$
\begin{equation*}
L^{j}(x, \underline{k})=-\frac{k^{j}}{g} \int d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} V_{\underline{\xi}}-\frac{x P^{+}}{2 g} \int d^{2} \xi e^{-i \underline{k} \cdot \underline{\xi}} \int_{-\infty}^{\infty} d z^{-} V_{\underline{\xi}}\left[\infty, z^{-}\right]\left[D^{j}-\overleftarrow{D}^{j}\right] V_{\underline{\xi}}\left[z^{-},-\infty\right] \tag{23}
\end{equation*}
$$

Performing the helicity dependent "CGC average"

$$
\begin{equation*}
g_{1 L}^{G d i p}\left(x, k_{T}^{2}\right)=\frac{-4 i}{g^{2}(2 \pi)^{3}} \epsilon^{i j} k^{i} \int d^{2} \zeta d^{2} \xi e^{-i \underline{k} \cdot(\underline{\xi}-\underline{\zeta})} \underbrace{\left\langle\left\langle\operatorname{tr}\left[V_{\underline{\zeta}}^{\dagger} V_{\underline{\xi}}^{j \mathrm{G}[2]}+\left(V_{\underline{\xi}}^{j \mathrm{G}[2]}\right)^{\dagger} V_{\underline{\zeta}}\right]\right\rangle\right\rangle}_{=2 N_{c} G_{\underline{\xi}, \underline{\xi}}^{j}(z s)}, \tag{24}
\end{equation*}
$$

with a polarized Wilson line of the second kind

$$
\begin{equation*}
V_{\underline{z}}^{i \mathrm{G}[2]} \equiv \frac{P^{+}}{2 s} \int_{-\infty}^{\infty} d z^{-} V_{\underline{z}}\left[\infty, z^{-}\right]\left[D^{i}\left(z^{-}, \underline{z}\right)-\overleftarrow{D}^{i}\left(z^{-}, \underline{z}\right)\right] V_{\underline{z}}\left[z^{-},-\infty\right] \tag{25}
\end{equation*}
$$

\Longrightarrow We call $G_{\underline{\xi}, \underline{\zeta}}^{j}(z s)$ a Polarized dipole amplitude of the second kind.

Solving, 't Hooft limit - Color

In the large N_{c}-limit (drop quarks t-channel exchanges)

$$
\begin{equation*}
U_{\underline{x}}^{\mathrm{pol}[1]} \rightarrow U_{\underline{x}}^{\mathrm{G}[1]} \tag{26}
\end{equation*}
$$

Replace adjoint WL using:

$$
\begin{equation*}
\left(U_{\underline{x}}\right)^{b a}=2 \operatorname{tr}\left[t^{b} V_{\underline{x}} t^{a} V_{\underline{x}}^{\dagger}\right] . \tag{27}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(U_{\underline{\underline{G}}}^{\mathrm{G}[1]}\right)^{b a}=2 \times\left\{2 \operatorname{tr}\left[t^{b} V_{\underline{x}} t^{a} V_{\underline{x}}^{\mathrm{G}[1] \dagger}\right]+2 \operatorname{tr}\left[t^{b} V_{\underline{\underline{~}}}^{\mathrm{G}[1]} t^{a} V_{\underline{x}}^{\dagger}\right]\right\} . \tag{28}\\
\left(U_{\underline{x}}^{i \mathrm{G}[2]}\right)^{b a}=2 \operatorname{tr}\left[t^{b} V_{\underline{x}} t^{a} V_{\underline{x}}^{i \mathrm{G}[2] \dagger}\right]+2 \operatorname{tr}\left[t^{b} V_{\underline{x}}^{i \mathrm{G}[2]} t^{a} V_{\underline{x}}^{\dagger}\right] \tag{29}
\end{gather*}
$$

Notice the factor 2 in the former. A gluon has twice the spin of a quark.

Solving, 't Hooft limit - Lifetime

After Fiertzing arround, introduce neighbor dipole amplitude Γ to enforce lifetime ordering at each step of the evolution.

Solving, 't Hooft limit - Equation and intercept

$$
\begin{align*}
& G\left(x_{10}^{2}, z s\right)=G^{(0)}\left(x_{10}^{2}, z s\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{s x_{10}^{2}}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\frac{1}{z^{\prime} s}}^{x_{10}^{2}} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)+3 G\left(x_{21}^{2}, z^{\prime} s\right)\right. \\
& \left.+2 G_{2}\left(x_{21}^{2}, z^{\prime} s\right)+2 \Gamma_{2}\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)\right], \tag{30a}\\
& \Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)=G^{(0)}\left(x_{10}^{2}, z^{\prime} s\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{s x_{10}^{2}}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\frac{1}{z^{\prime \prime} s}}^{\min \left[x_{10}^{2}, x_{21}^{2} \frac{z^{\prime}}{z^{\prime \prime}}\right]} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{32}^{2}, z^{\prime \prime} s\right)+3 G\left(x_{32}^{2}, z^{\prime \prime} s\right)\right. \\
& \left.+2 G_{2}\left(x_{32}^{2}, z^{\prime \prime} s\right)+2 \Gamma_{2}\left(x_{10}^{2}, x_{32}^{2}, z^{\prime \prime} s\right)\right], \\
& G_{2}\left(x_{10}^{2}, z s\right)=G_{2}^{(0)}\left(x_{10}^{2}, z s\right)+\frac{\alpha_{s} N_{c}}{\pi} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\max \left[x_{10}^{2}, \frac{1}{z^{\prime} s}\right]}^{\min \left[\frac{z}{z^{\prime}} x_{10}^{2}, \frac{1}{\Lambda^{2}}\right]} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[G\left(x_{21}^{2}, z^{\prime} s\right)+2 G_{2}\left(x_{21}^{2}, z^{\prime} s\right)\right], \\
& \Gamma_{2}\left(x_{10}^{2}, x_{21}^{2}, z^{\prime} s\right)=G_{2}^{(0)}\left(x_{10}^{2}, z^{\prime} s\right)+\frac{\alpha_{s} N_{c}}{\pi} \int_{\frac{\Lambda^{2}}{s}}^{z^{\prime}} \frac{x_{21}^{2}}{x_{10}^{2}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\max \left[x_{10}^{2}, \frac{1}{z^{\prime \prime} s}\right]}^{\min \left[\frac{z^{\prime}}{z^{\prime \prime}} x_{21}^{2}, \frac{1}{\Lambda^{2}}\right]} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[G\left(x_{32}^{2}, z^{\prime \prime} s\right)+2 G_{2}\left(x_{32}^{2}, z^{\prime \prime} s\right)\right] . \tag{30d}
\end{align*}
$$

Numerical solution for the intercept:

$$
\begin{equation*}
\Delta \Sigma\left(x, Q^{2}\right) \sim \Delta G\left(x, Q^{2}\right) \sim g_{1}\left(x, Q^{2}\right) \sim(1 / x)^{3.66} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} . \tag{31}
\end{equation*}
$$

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	U	$f_{1}=$	*	$h_{1}^{\perp}=(\mathrm{t}$
	L	*	$g_{1}=\cdots \cdots$	$h_{1 L}^{\perp}=\cdots-$
	T	$f_{1 T}^{\perp}=\bullet-\bullet$	$g_{1 T}=\stackrel{t}{\bullet}-\stackrel{t}{+}$	$\left.\begin{array}{c} h_{1}=t \\ h_{1 T}^{\perp}=t \\ b \end{array}\right)$

From "QCD2019 Workshop Summary"

Getting g_{1} - short recap

From the antisym hadronic tensor (e.g. [PDG] [Lampe and Reya 2000])

$$
\begin{equation*}
W^{[\mu \nu]} \sim i \epsilon_{\mu \nu \rho \sigma} \frac{q^{\rho}}{M_{p} P \cdot q}\left[S^{\sigma} g_{1}\left(x, Q^{2}\right)+\left(S^{\sigma}-\frac{Q \cdot q}{P \cdot q} P^{\sigma}\right) g_{2}\left(x, Q^{2}\right)\right] \tag{32}
\end{equation*}
$$

DIS pol Scattering cross section is

$$
\begin{equation*}
\sigma^{\gamma^{*} p}(\lambda, \Sigma)=-\frac{8 \pi^{2} \alpha_{E M} x}{Q^{2}} \lambda \Sigma\left[g_{1}\left(x, Q^{2}\right)-\frac{4 x^{2} M_{p}^{2}}{Q^{2}} g_{2}\left(x, Q^{2}\right)\right] \tag{33}
\end{equation*}
$$

One finally obtain (take the DLA limit)

$$
\begin{equation*}
g_{1}\left(x, Q^{2}\right)=-\sum_{f} \frac{Z_{f}^{2}}{2} \frac{N_{c}}{2 \pi^{3}} \int_{\Lambda^{2} / s}^{1} \frac{d z}{z} \int_{1 / z s}^{\min \left\{1 / z Q^{2}, 1 / \Lambda^{2}\right\}} \frac{d x_{10}^{2}}{x_{10}^{2}}\left[Q\left(x_{10}^{2}, z s\right)+2 G_{2}\left(x_{10}^{2}, z s\right)\right] \tag{34}
\end{equation*}
$$

Recovering small-x pol DGLAP

Pol DGLAP splitting function at small-x is

$$
\begin{equation*}
\Delta P_{g g}(z) \rightarrow \frac{\alpha_{s}}{2 \pi} 4 N_{c}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} 4 N_{c}^{2} \ln ^{2} z+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \frac{7}{3} N_{c}^{3} \ln ^{4} z \tag{35}
\end{equation*}
$$

From the large N_{C} equations, start evolution with

$$
\begin{equation*}
G^{(0)}\left(x_{1} 0^{2}, z s\right)=0, \quad G_{2}^{(0)}\left(x_{1} 0^{2}, z s\right)=1 \tag{36}
\end{equation*}
$$

iterate three times, one finds
$\Delta G^{(3)}\left(x, Q^{2}\right)=\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left[\frac{7}{120} \ln ^{5}\left(\frac{1}{x}\right) \ln \left(\frac{Q^{2}}{\Lambda^{2}}\right)+\frac{1}{6} \ln ^{4}\left(\frac{1}{x}\right) \ln ^{2}\left(\frac{Q^{2}}{\Lambda^{2}}\right)+\frac{2}{9} \ln ^{3}\left(\frac{1}{x}\right) \ln ^{3}\left(\frac{Q^{2}}{\Lambda^{2}}\right)\right]$
where

$$
\begin{equation*}
1 / x_{10}^{2} \rightarrow Q^{2}, \quad z s z_{10}^{2} \rightarrow 1 / x \tag{37}
\end{equation*}
$$

