T-Odd Leading-Twist Quark TMDs at Small-x : Sub-Eikonal Evolution of the Sivers Function

M. GABRIEL SANTIAGO

WITH YURI KOVCHEGOV

JHEP 11 (2022) 098

Quark TMDs

The leading twist quark TMDs give various correlations between the transverse momentum and polarizations of the quarks within a hadron with the polarization of the parent hadron

Their scale evolution in Q^2 is given by the CSS equations, but the small- x evolution is an ongoing effort

L

The *T*-odd leading-twist quark TMD called the Sivers f_{1T}^{\perp} encodes spin-orbit coupling within the hadronic state

This function changes sign between SIDIS and the similar Drell-Yan (DY) process

$$f_{1T}^{\perp \text{ SIDIS}}(x, k_T^2) = -f_{1T}^{\perp \text{ DY}}(x, k_T^2)$$

Operator Definition of TMDs

Quark TMDs are defined by the non-local operator product in the hadron state

$$\Phi^{[\Gamma]} = \int \frac{\mathrm{d}r^{-} \,\mathrm{d}^{2} r_{\perp}}{2 \,(2\pi)^{3}} e^{ik \cdot r} \langle P, S | \bar{\psi}(r) \mathcal{U}[r,0] \Gamma \psi(0) | P, S \rangle$$

The unintegrated quark density f_1^q and the Sivers function $f_{1T}^{\perp q}$ are given by the taking the matrix to be $\gamma^+/2$

$$f_1^q(x,k_T^2) - \frac{\underline{k} \times \underline{S}_P}{M_P} f_{1T}^{\perp q}(x,k_T^2) = \int \frac{\mathrm{d}r^- \,\mathrm{d}^2 r_\perp}{2\,(2\pi)^3} e^{ik\cdot r} \langle P,S | \bar{\psi}(r) \mathcal{U}[r,0] \frac{\gamma^+}{2} \psi(0) | P,S \rangle$$

Small-*x* TMDs from polarized Wilson lines

Kovchegov, Sievert and Pitonyak (2015-2019) developed a Light Cone Operator Treatment (LCOT) for deriving small- *x* evolution of TMDs

Studied small- x evolution equations for the quark helicity TMD, gluon helicity TMD, quark transversity TMD, and quark Sivers function

Rewriting the TMD operator definitions at small- x yields modified dipole correlators

Small-*x* TMDs from polarized Wilson lines

Simplify

- \circ Rewrite operator definition in small- x limit using shockwave formalism
- Expand to a given order in eikonality
- Obtain expression for TMD in terms of 'polarized dipoles'

Evolve

- Calculate small- x gluon/quark emissions in dipole
- $\,\circ\,$ Take (for example) large- N_c limit to obtain closed equations

Solve

- Solve integral equations analytically (if possible) or numerically
- Plug evolved dipole back into TMD definition

Gauge Link to Dipole

Sub-eikonal corrections

The (anti)quark propagator through the shockwave can include sub-eikonal corrections to allow for spin-dependence

From the helicity and transversity TMDs, at least need sub-sub-eikonal corrections for general leading-twist quark TMD

$$\begin{split} \hat{V}_{\underline{w}}^{\dagger} &= \delta_{\chi,\chi'} V_{\underline{w}}^{\dagger} + \text{sub-eikonal corrections} \\ &= \delta_{\chi,\chi'} V_{\underline{w}}^{\dagger} + V_{\underline{w}}^{\text{pol}\dagger} \end{split}$$

Operator Product to Dipoles

The quark correlator can be rewritten in terms of Wilson lines

$$f_{1}^{q}(x,k_{T}^{2}) - \frac{\underline{k} \times \underline{S}_{P}}{M_{P}} f_{1T}^{\perp q}(x,k_{T}^{2}) = -\frac{2p_{1}^{+}}{2(2\pi)^{3}} \int d^{2}\zeta_{\perp} d^{2}w_{\perp} \frac{d^{2}k_{1\perp} dk_{1}^{-}}{(2\pi)^{3}} e^{i(\underline{k}_{1}+\underline{k})\cdot(\underline{w}-\underline{\zeta})}$$
$$\theta(k_{1}^{-}) \frac{1}{(xp_{1}^{+}k_{1}^{-}+\underline{k}_{1}^{2})(xp_{1}^{+}k_{1}^{-}+\underline{k}^{2})} \sum_{\chi_{1},\chi_{2}} \bar{v}_{\chi_{2}}(k_{2}) \frac{\gamma^{+}}{2} v_{\chi_{1}}(k_{1}) \left\langle \mathrm{T} V_{\underline{\zeta}}^{ij} \, \bar{v}_{\chi_{1}}(k_{1}) V_{\underline{w}}^{\dagger \, \mathrm{pol}, \, \mathrm{T}ji} v_{\chi_{2}}(k_{2}) \right\rangle$$

The polarized Wilson line $V_{\underline{w}}^{\dagger \text{ pol, T}}$ makes the correlator a transverse polarized dipole

Eikonal Flavor Non-Singlet Sivers Function

The flavor non-singlet Sivers function has a nonzero eikonal contribution

$$\begin{split} & \left[-\frac{\underline{k} \times \underline{S}_P}{M_P} f_{1\,T}^{\perp \,NS}(x, k_T^2) \right]_{\text{eikonal}} \subset \frac{4p_1^+}{(2\pi)^3} \int \mathrm{d}^2 \zeta_\perp \,\mathrm{d}^2 w_\perp \,\frac{\mathrm{d}^2 k_{1\perp} \,\mathrm{d} k_1^-}{(2\pi)^3} e^{i(\underline{k}_1 + \underline{k}) \cdot (\underline{w} - \underline{\zeta})} \theta(k_1^-) \\ & \times \left\{ \frac{\underline{k} \cdot \underline{k}_1}{(xp_1^+ k_1^- + \underline{k}_1^2)(xp_1^+ k_1^- + \underline{k}^2)} \left\langle \mathrm{T} \,\operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w}}^{\dagger} \right] - \mathrm{T} \,\operatorname{tr} \left[V_{\underline{w}} V_{\underline{\zeta}}^{\dagger} \right] + \bar{\mathrm{T}} \,\operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w}}^{\dagger} \right] - \bar{\mathrm{T}} \,\operatorname{tr} \left[V_{\underline{w}} V_{\underline{\zeta}}^{\dagger} \right] \right\} \\ & + \frac{\underline{k}_1^2}{(xp_1^+ k_1^- + \underline{k}_1^2)^2} \left\langle \mathrm{T} \,\operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w}}^{\dagger} \right] - \mathrm{T} \,\operatorname{tr} \left[V_{\underline{w}} V_{\underline{\zeta}}^{\dagger} \right] \right\rangle \right\} \end{split}$$

The terms in angle brackets give us the imaginary part of eikonal dipoles

Dipole Odderon

In the color dipole picture, the odderon is the antisymmetric, imaginary piece of a dipole correlator

Eikonal Sivers Function = Spin-Dependent Odderon

The imaginary correlator in the Sivers function is exactly the odderon amplitude, so we have

$$-\frac{\underline{k} \times \underline{S}_{P}}{M_{P}} f_{1\,T}^{\perp\,q}(x,k_{T}^{2})\Big|_{\text{eikonal}} = \frac{4i\,N_{c}\,p_{1}^{+}}{(2\pi)^{3}} \int \mathrm{d}^{2}\zeta_{\perp}\,\mathrm{d}^{2}w_{\perp}\,\frac{\mathrm{d}^{2}k_{1\perp}\,\mathrm{d}k_{1}^{-}}{(2\pi)^{3}} e^{i(\underline{k}_{1}+\underline{k})\cdot(\underline{w}-\underline{\zeta})}\theta(k_{1}^{-}) \\ \times \left[\frac{2\,\underline{k}\cdot\underline{k}_{1}}{(xp_{1}^{+}k_{1}^{-}+\underline{k}_{1}^{2})(xp_{1}^{+}k_{1}^{-}+\underline{k}^{2})} + \frac{\underline{k}_{1}^{2}}{(xp_{1}^{+}k_{1}^{-}+\underline{k}_{1}^{2})^{2}}\right]\mathcal{O}_{\underline{\zeta}\underline{w}} \\ \left[f_{1T}^{\perp}(x,k_{T}^{2})\Big|_{\text{eikonal}} \sim \frac{1}{x}\right]$$

Agreement with the results of Boer et al (2016) and Zhou et al (2019)!

Eikonal spin-dependent effect even after evolution

Sub-Eikonal Flavor Non-Singlet Sivers Function

Previously we considered the known eikonal (spin-dependent odderon) contribution and the new sub-eikonal contribution

We neglected some sub-eikonal operators which mix and change the small- x asymptotics, which we have now restored

$$-\frac{\underline{k}\times\underline{S}_{P}}{M_{P}}f_{1T}^{\perp NS}(x,k_{T}^{2})\Big|_{\text{sub-eikonal}} = \frac{16N_{c}}{(2\pi)^{3}}\int d^{2}x_{10}\frac{d^{2}k_{1\perp}}{(2\pi)^{3}}\frac{e^{i(\underline{k}+\underline{k}_{1})\cdot\underline{x}_{10}}}{\underline{k}_{1}^{2}\underline{k}^{2}}\int_{\underline{\lambda}_{s}^{2}}^{1}\frac{dz}{z}$$

$$\times\left\{\underline{k}_{1}\cdot\underline{k}(k-k_{1})^{i}\left[\epsilon^{ij}S_{P}^{j}x_{10}^{2}F_{NS}^{A}(x_{10}^{2},z)+x_{10}^{i}\underline{x}_{10}\times\underline{S}_{P}F_{NS}^{B}(x_{10}^{2},z)+\epsilon^{ij}x_{10}^{j}\underline{x}_{10}\cdot\underline{S}_{P}F_{NS}^{C}(x_{10}^{2},z)\right]$$

$$+i\underline{k}_{1}\cdot\underline{k}\underline{x}_{10}\times\underline{S}_{P}F_{NS}^{[2]}(x_{10}^{2},z)-i\underline{k}\times\underline{k}_{1}\underline{x}_{10}\cdot\underline{S}_{P}F_{NS}^{\mathrm{mag}}(x_{10}^{2},z)\right\}$$

$$=\text{chromomagnetic interaction}+\text{covariant phase factor}$$

$$Previously missed!$$

Large- N_c Small-x Evolution for Sivers

DIS 2023

Large- N_c Linearized Small-x Evolution for NS Sivers in Double Logarithmic Approximation (DLA)

 $F_A^{NS}(x_{10}^2, z) = F_A^{NS\,(0)}(x_{10}^2, z)$ $+ \frac{\alpha_s N_c}{4\pi} \int^z \frac{dz'}{z'} \int^{\min\left[\frac{z}{z'}x_{10}^2, \frac{1}{\Lambda^2}\right]} \frac{dx_{21}^2}{x_{21}^2} \left[6 F_A^{NS}(x_{21}^2, z') - F_B^{NS}(x_{21}^2, z') + F_C^{NS}(x_{21}^2, z') \right]$ $F_B^{NS}(x_{10}^2, z) = F_B^{NS(0)}(x_{10}^2, z)$ $+ \frac{\alpha_s N_c}{4\pi} \int^z \frac{dz'}{z'} \int^{\min\left[\frac{z}{z'}x_{10}^2, \frac{1}{\Lambda^2}\right]} \int \left[-2 F_A^{NS}(x_{21}^2, z') + 5 F_B^{NS}(x_{21}^2, z') - F_C^{NS}(x_{21}^2, z')\right],$ $F_C^{NS}(x_{10}^2,z) = F_C^{NS\,(0)}(x_{10}^2,z)$ $+ \frac{\alpha_s N_c}{4\pi} \int_{\frac{\Lambda^2}{s}}^{z} \frac{dz'}{z'} \int_{\max[x_{10}^2, \frac{1}{\lambda'^2}]}^{\min[\frac{z}{z'}, x_{10}^2, \frac{1}{\Lambda^2}]} \frac{dx_{21}^2}{x_{21}^2} \left[2 F^{NS \max}(x_{21}^2, z') + 6 F_C^{NS}(x_{21}^2, z') \right],$ $F^{NS\max}(x_{10}^2, z) = F^{NS\max(0)}(x_{10}^2, z)$ $+ \frac{\alpha_s N_c}{2\pi} \int\limits_{\frac{1}{sx_{10}^2}}^{z} \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma^{NS \max}(x_{10}^2, x_{21}^2, z') \right]$ $\left. + \, 2 \, \Gamma_A^{NS}(x_{10}^2,x_{21}^2,z') - \Gamma_B^{NS}(x_{10}^2,x_{21}^2,z') + 3 \, \Gamma_C^{NS}(x_{10}^2,x_{21}^2,z') \right]$

$$\begin{split} \Gamma_A^{NS}(x_{10}^2, x_{21}^2, z') &= F_A^{NS\,(0)}(x_{10}^2, z') + \frac{\alpha_s \, N_c}{4\pi} \int_{-\infty}^{z' \frac{x_{10}^2}{x_{10}^2}} \frac{\min\left[\frac{z''}{z''} \int_{\max[x_{10}^2, \frac{1}{z''_s}]}^{\min\left[\frac{z}{z''} x_{21}^2, \frac{1}{\Lambda^2}\right]} dx_{32}^2}{\max[x_{10}^2, \frac{1}{z''_s}]} \\ &\times \left[6 \, F_A^{NS}(x_{32}^2, z'') - F_B^{NS}(x_{32}^2, z'') + F_C^{NS}(x_{32}^2, z'') \right] \\ \Gamma_B^{NS}(x_{10}^2, x_{21}^2, z') &= F_B^{NS\,(0)}(x_{10}^2, z') + \frac{\alpha_s \, N_c}{4\pi} \int_{-\infty}^{z' \frac{x_{10}^2}{x_{10}^2}} \frac{dz''}{z''} \int_{\max[x_{10}^2, \frac{1}{z''_s}]}^{\min\left[\frac{z'}{z''} x_{21}^2, \frac{1}{\Lambda^2}\right]} dx_{32}^2 \\ &\times \left[-2 \, F_A^{NS}(x_{23}^2, z'') + 5 \, F_B^{NS}(x_{32}^2, z'') - F_C^{NS}(x_{32}^2, z'') \right], \\ \Gamma_C^{NS}(x_{10}^2, x_{21}^2, z') &= F_C^{NS\,(0)}(x_{10}^2, z') + \frac{\alpha_s \, N_c}{4\pi} \int_{-\frac{x_s}{x_0}}^{z' \frac{x_{11}}{x_0^2}} \int_{\max[x_{10}^2, \frac{1}{z''_s}]}^{\min\left[\frac{z'}{z''} x_{21}^2, \frac{1}{\Lambda^2}\right]} dx_{32}^2 \\ &\times \left[2 \, F^{NS\,\max}(x_{23}^2, z'') + 6 \, F_C^{NS}(x_{32}^2, z'') \right], \\ \Gamma^{NS\,\max}(x_{10}^2, x_{21}^2, z') &= F^{NS\,\max}(0)(x_{10}^2, z') \\ &+ \frac{\alpha_s \, N_c}{2\pi} \, \int_{\frac{z'}{x_{10}}}^{z'} \frac{dz''}{z''} \int_{\frac{z''}{x_{10}}}^{\min\left[x_{10}^2, x_{21}^2, \frac{z'}{x_0}\right]} \frac{dx_{32}^2}{x_{32}^2} \\ &\times \left[2 \, F^{NS\,\max}(0)(x_{10}^2, x_{21}^2, z') + 6 \, F_C^{NS}(x_{23}^2, z'') \right], \\ \Gamma^{NS\,\max}(x_{10}^2, x_{21}^2, z') &= F^{NS\,\max}(0)(x_{10}^2, x_{21}^2, z') \\ &+ \frac{\alpha_s \, N_c}{2\pi} \, \int_{\frac{z'}{x_{10}}}^{z'} \frac{dz''}{z''} \, \int_{\frac{z''}{x_{10}}}^{\min\left[x_{10}^2, x_{21}^2, \frac{z'}{x_{10}^2}\right]} \frac{dx_{32}^2}{x_{32}^2} \\ &\times \left[\Gamma^{NS\,\max}(x_{10}^2, x_{22}^2, z'') + 2 \, \Gamma_A^{NS}(x_{10}^2, x_{32}^2, z'') - \Gamma_B^{NS}(x_{10}^2, x_{32}^2, z'') + 3 \, \Gamma_C^{NS}(x_{10}^2, x_{32}^2, z'') \right] \right] \right\}$$

'Neighbor' dipole evolution equations

Dipole evolution equations

Numerical Solution for NS Sivers

DIS 2023

We find that a modified ansatz beyond the simple power law behavior describes the numerical solution well

$$F_{NS}=F_{NS}^{(0)}\,e^{lpha\eta+eta e^{-\gamma\eta}}$$
 'pre-asymptotic' correction usual intercept term

Interesting to find an exponential correction to the intercept, equivalently an infinite series of sub-leading power corrections

$$e^{\alpha\eta+\beta e^{-\gamma\eta}} \xrightarrow[x \to 0]{} \left(\frac{1}{x}\right)^{\alpha\sqrt{\frac{\alpha_s N_c}{4\pi}}} + \beta\left(\frac{1}{x}\right)^{(\alpha-\gamma)\sqrt{\frac{\alpha_s N_c}{4\pi}}} + \frac{\beta^2}{2}\left(\frac{1}{x}\right)^{(\alpha-2\gamma)\sqrt{\frac{\alpha_s N_c}{4\pi}}} + \dots$$

Numerical Results

The pre-asymptotic terms are very small compared to our numerical precision, so extrapolating to the continuum limit we find

$$F_A^{NS} \sim F_B^{NS} \sim F_C^{NS} \sim F_C^{NS} \sim \left(\frac{1}{x}\right)^{3.4\sqrt{\frac{\alpha_s N_c}{4\pi}}}$$

Plugging this into the definition of the Sivers function we find the sub-eikonal contribution as

$$\left. f_{1\,T}^{\perp NS}(x,k_T^2) \right|_{\text{sub-eikonal}} \sim \left(\frac{1}{x}\right)^{3.4\sqrt{\frac{\alpha_s N_c}{4\pi}}}$$

Conclusions

We obtained new sub-eikonal evolution after restoring the missing F_{mag} dipole

Small-*x* Sivers function is dominated by eikonal spin-dependent odderon with a sub-eikonal, energy dependent correction

$$\begin{aligned} f_{1\,T}^{\perp\,q}(x \ll 1, k_T^2) &= C_O(k_T^2, x) \, \frac{1}{x} + C_1(k_T^2) \, \left(\frac{1}{x}\right)^{3.4 \sqrt{\frac{\alpha_s N_c}{4\pi}}} + \dots \\ \uparrow & \uparrow \\ \text{Odderon} & \text{Sub-eikonal Correction} \end{aligned}$$

Odderon small-*x* evolution is known to have a zero intercept away from the saturation regime

Sub-eikonal correction provides a background which may be comparable with the odderon

Backup Slides

Small- $x \rightarrow$ Shockwave formalism

Fourier factor picks out long range correlations in the x^- direction

$$e^{ixP^+r^-} \to \text{large } r^- \text{ for small } x$$

Hadron is very Lorentz contracted, so interactions in gauge link happen over short x^- lifetime inside the shockwave

Eikonal power counting

We can expand in powers of x or equivalently inverse powers of CM energy s

Eikonal distributions $q(x, k_T) \sim \frac{1}{x}$, no COM energy suppression Sub-eikonal distributions $q(x, k_T) \sim x^0$, $\frac{1}{s}$ energy suppression Sub-sub-eikonal distributions $q(x, k_T) \sim x$, $\frac{1}{s^2}$ energy suppression

Small-*x* TMD diagrams

Fairly general analysis shows that only class B diagrams contribute to spin dependent TMDs at sub-eikonal order

DIS 2023

General polarized Wilson line

DIS 2023

General polarized Wilson line

Full **sub-sub-eikonal** polarized fundamental Wilson line for TMDs which depend on the proton's transverse spin

$$\begin{split} & V_{\underline{x},\underline{y};\chi',\chi} = V_{\underline{x}} \, \delta^2(\underline{x} - \underline{y}) \, \delta_{\chi,\chi'} + \int_{-\infty}^{\infty} \mathrm{d}z^- \, d^2z \, V_{\underline{x}}[\infty, z^-] \, \delta^2(\underline{x} - \underline{z}) \, \mathcal{O}_{\chi',\chi}^{\mathrm{pol}\,\mathrm{G}}(z^-, \underline{z}) \, V_{\underline{y}}[z^-, -\infty] \, \delta^2(\underline{y} - \underline{z}) \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \, d^2z_1 \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \, d^2z_2 \, \sum_{\chi''=\pm 1} V_{\underline{x}}[\infty, z_2^-] \, \delta^2(\underline{x} - \underline{z}_2) \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(z^-, \underline{z}_2) \, V_{\underline{z}_1}[z^-_2, z^-_1] \, \delta^2(\underline{z} - \underline{z}_1) \\ & \times \, \mathcal{O}_{\chi'',\chi}^{\mathrm{pol}\,\mathrm{G}}(z^-_1, \underline{z}_1) \, V_{\underline{y}}[z^-_1, -\infty] \, \delta^2(\underline{y} - \underline{z}_1) + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \, V_{\underline{x}}[\infty, z_2^-] \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(z^-_2, z^-_1; \underline{x}, \underline{y}) \, V_{\underline{y}}[z^-_1, -\infty] \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \int_{z_2^-}^{\infty} \mathrm{d}z_3^- \int_{z_3^-}^{\infty} \mathrm{d}z_4^- \, d^2z \, \sum_{\chi''=\pm 1} V_{\underline{x}}[\infty, z_4^-] \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_4^-, z^-_3; \underline{x}, \underline{z}) \, V_{\underline{z}}[z^-_3, z^-_2] \, \mathcal{O}_{\chi'',\chi}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_2^-, z^-_1; \underline{z}, \underline{y}) \, V_{\underline{y}}[z^-_1, -\infty] \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \int_{z_2^-}^{\infty} \mathrm{d}z_3^- \int_{z_3^-}^{\infty} \mathrm{d}z_4^- \, d^2z \, \sum_{\chi''=\pm 1} V_{\underline{x}}[\infty, z^-_4] \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_4^-, z^-_3; \underline{x}, \underline{z}) \, V_{\underline{z}}[z^-_3, z^-_2] \, \mathcal{O}_{\chi'',\chi}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_2^-, z^-_1; \underline{z}, \underline{y}) \, V_{\underline{y}}[z^-_1, -\infty] \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \, d^2z_2 \, \int_{z_2^-}^{\infty} \mathrm{d}z_3^- \, V_{\underline{x}}[\infty, z^-_3] \, \delta^2(\underline{x}_2 - \underline{x}) \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{q}}(\overline{z}_1, z^-_2, z^-_3; \underline{x}, \underline{z}_2) \delta^2(\underline{z}_2 - \underline{y}) V_{\underline{y}}[z^-_1, -\infty] \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \, \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \, \int_{z_2^-}^{\infty} \mathrm{d}z_3^- \, d^2z \, \chi_{\underline{x}'=\pm 1} \, V_{\underline{x}}[\infty, z^-_3] \, \delta^2(\underline{x} - \underline{z}) \, \mathcal{O}_{\chi',\chi'''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_3; \underline{z}) \, V_{\underline{z}}[z^-_3, z^-_2] \, \mathcal{O}_{\chi'',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_1, z^-_2, z^-_3; \underline{z}, \underline{z}) \, V_{\underline{y}}[z^-_1, -\infty] \\ & + \int_{-\infty}^{\infty} \mathrm{d}z_1^- \, \int_{z_1^-}^{\infty} \mathrm{d}z_2^- \, \int_{z_2^-}^{\infty} \mathrm{d}z_3^- \, \mathcal{U}_{\underline{x}}[\infty, z^-_3] \, \delta^2(\underline{x} - \underline{z}) \, \mathcal{O}_{\chi',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_3; \underline{z}) \, V_{\underline{z}}[z^-_3, z^-_1] \, \mathcal{O}_{\chi'',\chi''}^{\mathrm{pol}\,\mathrm{G}}(\overline{z}_1, z^-_1; \underline{$$

cf. *Altinoluk et al* (2020), *Chirilli* (2021) subeikonal propagator

Sivers Flavor Non-Singlet Dipoles

$$\begin{split} F^{NS\,i}_{\underline{w},\underline{\zeta}}(z) &= \frac{1}{2N_c} \operatorname{Re} \left\langle \! \left\langle \operatorname{T} \operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w}}^{i\dagger} \right] - \operatorname{T} \operatorname{tr} \left[V_{\underline{w}}^{i} V_{\underline{\zeta}}^{\dagger} \right] \right\rangle \! \right\rangle, \\ F^{NS\,[2]}_{\underline{w},\underline{\zeta}}(z) &= \frac{1}{2N_c} \operatorname{Im} \left\langle \! \left\langle \operatorname{T} \operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w};\underline{k},\underline{k}_1}^{[2]\dagger} \right] - \operatorname{T} \operatorname{tr} \left[V_{\underline{w};\underline{k},\underline{k}_1} V_{\underline{\zeta}}^{\dagger} \right] \right\rangle \! \right\rangle, \\ F^{NS\,\max}_{\underline{w},\underline{\zeta}}(z) &= \frac{1}{2N_c} \operatorname{Re} \left\langle \! \left\langle \operatorname{T} \operatorname{tr} \left[V_{\underline{\zeta}} V_{\underline{w}}^{\max} \dagger \right] - \operatorname{T} \operatorname{tr} \left[V_{\underline{w}}^{\max} V_{\underline{\zeta}}^{\dagger} \right] \right\rangle \! \right\rangle \\ V^{i}_{\underline{x}} &= -\frac{p_1^{i}}{8s} \int_{-\infty}^{\infty} \mathrm{d} z^{-} \ V_{\underline{x}}[\infty, z^{-}] \left(\bar{D}_z^{i} - \bar{D}_z^{i} \right) V_{\underline{x}}[z^{-}, -\infty] \\ V^{(2)}_{\underline{x}} &= \frac{i p_1^{+}}{8s} \int_{-\infty}^{\infty} \mathrm{d} z^{-} \ V_{\underline{x}}[\infty, z^{-}] \left((\bar{D}_z^{i} - \bar{D}_z^{i})^2 - (\underline{k}_1 - \underline{k})^2 \right) V_{\underline{x}}[z^{-}, -\infty] \\ &- \frac{g^2 p_1^{+}}{4s} \int_{-\infty}^{\infty} \mathrm{d} z_1^{-} \int_{z_1^{-}}^{\infty} \mathrm{d} z_2^{-} V_{\underline{x}}[\infty, z_2^{-}] t^b \psi_{\beta}(z_2^{-}, \underline{x}) U_{\underline{x}}^{ba}[z_2^{-}, z_1^{-}] \left[\frac{\gamma^{+}}{2} \right]_{\alpha\beta} \ \bar{\psi}_{\alpha}(z_1^{-}, \underline{x}) t^a V_{\underline{x}}[z_1^{-}, -\infty] \\ &- \frac{g^2 p_1^{+}}{4s} \int_{-\infty}^{\infty} \mathrm{d} z_1^{-} \int_{z_1^{-}}^{\infty} \mathrm{d} z_2^{-} V_{\underline{x}}[\infty, z^{-}] F^{12}(z^{-}, \underline{x}) U_{\underline{x}}^{ba}[z_2^{-}, z_1^{-}] \left[\frac{\gamma^{+} \gamma^5}{2} \right]_{\alpha\beta} \ \bar{\psi}_{\alpha}(z_1^{-}, \underline{x}) t^a V_{\underline{x}}[z_1^{-}, -\infty] \end{split}$$

DIS 2023