

T-odd Leading-Twist Quark TMDs at Small x : Sub-Eikonal Evolution of the Sivers Function

Tuesday, 28 March 2023 17:30 (20 minutes)

Abstract

We study the small- x asymptotics of the flavor non-singlet T-odd leading-twist quark transverse momentum dependent parton distributions (TMDs). While the leading eikonal small-x asymptotics of the quark Sivers function is given by the spin-dependent odderon, we are interested in revisiting the sub-eikonal correction considered by us earlier. We first simplify the expression for the TMD at small Bjorken x and then construct small- x evolution equations for the resulting operators in the large- N_{c} limit, with N_{c} the number of quark colors. The evolution equations resum all powers of the double-logarithmic parameter $\alpha_{s} \ln ^{2}(1 / x)$, where α_{s} is the strong coupling constant, which is assumed to be small. Solving these evolution equations numerically, we arrive at the following leading small- x asymptotics at large N_{c} : \begin\{align\} } \backslash right $)^{\wedge}\left\{3.4 \backslash, \backslash\right.$ sqrt $\left\{\backslash\right.$ frac $\left\{\right.$ alpha_s $\left.\backslash, \mathrm{N} _c\right\}\{4 \backslash$ pi $\left.\left.\}\right\}\right\}, \backslash$ notag lend\{align\} The functions $C_{O}\left(x, k_{T}^{2}\right)$ and $C_{1}\left(x, k_{T}^{2}\right)$ can be readily obtained in our formalism: they are mildly x-dependent and do not strongly affect the power-of- x asymptotics shown above. The function C_{O}, along with the $1 / x$ factor, arises from the odderon exchange. For the sub-eikonal contribution to the quark Sivers function (the term with C_{1}), our result shown above supersedes the one obtained in our previous work due to the new contributions identified recently.

Submitted on behalf of a Collaboration?

No

Participate in poster competition?

No

Primary authors: SANTIAGO, M Gabriel (Center for Nuclear Femtography); Prof. KOVCHEGOV, Yuri

Presenter: SANTIAGO, M Gabriel (Center for Nuclear Femtography)
Session Classification: WG2

Track Classification: WG2: Small-x, Diffraction and Vector Mesons

