Chao Peng (MEP Group, Argonne National Laboratory)

Electro-production off Helium-4

Future Experiment of Coherent J/ψ

Nucleus and QCD

- Ground state of light nuclei can be well described in terms of hadronic degrees of freedom
 - Long range: nucleon-nucleon interaction mediated by light mesons
 - Intermediate range: multi-pions and heavier mesons
 - Short range: phenomenological repulsive part
- However, transition from hadronic description to quark-gluon description is puzzling
 - One of the critical goals in nuclear physics understanding nucleus in terms of basic degrees of freedom in QCD
 - Explicit role of quarks and gluons in nuclei
 - Ab-initio calculations for light nuclei initiated, experimental input will be important

Matter Radii of Nucleons and Nucleus

- Mass radius of the proton is notably smaller than the electric charge radius
 - Observed in J/ψ -007 experiment
 - Dipole fit result is shown, a variety of models was used
 - Active debate on the proper definition of r_M
- Mass radius of a light nuclei (⁴He) is similarly interesting
 - Charge radius of a nuclei average motion and dynamical properties
 - How about the mass radius?

B. Duran et al. $[J/\psi$ -007], arXiv:2207.05212

Diffractive Minima of 4He

- Two diffractive minima observed from charge form factor of ⁴He
 - Bound nucleons distributing their charge in the nucleus
 - First diffractive minimum charged quarks forming clumps
- What about the gluonic gravitational form factor of ⁴He?
 - Will there be gluonic clumps?
 - Same position (Q²) of the possible diffractive minimum?
 - A probe to gluonic structure and a measurement over wide t

A. Camsonne, PRL 112, 132503 (2014)

Coherent J/ ψ Electro-production

- J/ψ production
 - Multiple gluonic exchange
 - A direct probe to the gluonic structure
- Detection of scattered electron and recoil ⁴He from J/ψ electro-production
 - Reconstruct missing mass
 - Determine virtual photon four-momentum
 - Explicit ground state recoil target detection – removal of incoherent backgrounds
 - Additional detection of J/ψ decay can further suppress single e/π backgrounds
- Recoil ⁴He detection is critical
 - A promising candidate nanowire recoil detector

2-gluon exchange diagram

Superconducting Nanowire Detectors

Construction and Operation

- Thin film ~10nm NbN film with $T_c=15 \text{ K}$ ^[1]
- Meandering 100nm wire fills pixel area
- After etching device has $T_{c} \sim 5 \mbox{ K}$
- Current biased: I_b~ 15 20 μA
- Very Low timing jitter (current record of 3 ps)
- Reset times can be as low as 5-10 ns (potentially <1 ns in the future)
- Pixels on the order of 10x10 µm² to 30x30 µm²
- Operates at LHe temperatures (T < 5K)
- Operation in magnetic fields up to ~6T^[2]
- Photon detection efficiencies >90%
- Expected to very radiation hard
- Can be fabricated with different geometry or pixel dimensions

Ongoing R&D at Argonne

- [1] APL Materials 6, 076107 (2018)
- [2] Nucl.Instrum.Meth.A 959 (2020) 163543
- [3] <u>Nanomaterials 2020, 10, 1198</u>

Slide Courtesy of W. Armstrong

Superconducting Nanowire Recoil Detector

Two possible modes of detection

Scintillation photon detector

- LHe EUV scintillation detected by sparse array of photon detectors
- LHe transparent to own scintillation
- Photons from recoil directly detected by SC nanowires

Pro: Easy fabrication

- sparse array of photon detectors

Con: PID and kinetic energy resolution

Recoil telescope array

- Directly detect recoils in range telescope
- Use wire size energy threshold correlation for PID and energy reconstruction
- Pro: Excellent energy reconstruction

Con: Higher fabrication complexity

Cross Section Estimates

- $\gamma + {}^{4}He \rightarrow J/\psi + {}^{4}He$
- Pomeron-Exchange Model

Y.-s. Oh and T. S. H. Lee Phys. Rev., vol. C66, p. 045201, 2002. J.-J. Wu and T. S. H. Lee Phys. Rev., vol. C86, p. 065203, 2012.

Cross Section Estimates

- Electro-production
 - $e + 4He \rightarrow e' + {}^{4}He + J/\psi$
 - Estimated with Vector Dominance model

M. Adams et al. Z. Phys. C, vol. 74, pp. 237–261, 1997.

$$\sigma_{el}(Q^2) = \int_{-t_{max}}^{t_{min}} dt \frac{d\sigma(t,Q^2)}{dt} \cdot \left(\frac{M_{J/\psi}^2}{Q^2 + M_{J/\psi}^2}\right)^m \cdot \left(1 + \varepsilon R(Q^2)\right)$$

• m = 2.575

M. Tytgat, Ph.D. dissertation, Hamburg U., 2001.

$$R(Q^{2}) = \left(\frac{cM_{J/\psi}^{2} + Q^{2}}{cM_{J/\psi}^{2}}\right)^{n} - 1$$

• c = 2.164, n = 2.131

R. Fiore, L. Jenkovszky, V. Magas, S. Melis, and A. Prokudin Phys. Rev. D, vol. 80, p. 116001, 2009.

Angle and Kinetic Energy Distributions

- Angle and kinetic energy distributions are obtained with the cross-section estimation (E_{beam} = 11 GeV)
 - For high rates, focus on the forward-angle and low-momentum region

Possible Schematic of the Measurement

- Explored with existing electron facility (JLab) and detectors (HMS & SHMS at Hall C)
 - Detection of scattered electron and recoil ⁴He
 - Simple simulation for signals, full simulations with backgrounds (mainly elas. rad. tail) are ongoing
 - Considering other detectors/facilities in full simulations (CLAS/SoLID at JLab, ePIC at EIC)
 - Detection of lepton pairs from J/ψ decay possible in large acceptance detectors

Simulation – Kinematic Coverage

- The experimental setting focuses on the forward-angle and low-momentum region
 - HMS: central momentum 1.0 GeV/c at an angle of 12.0°
 - SHMS: central momentum 2.0 GeV/c at an angle of 7.0°

Simulation – Kinematic Variables Reconstruction

- Explored with existing electron facility (JLab) and detectors (HMS & SHMS at Hall C)
 - Detection of scattered electron and recoil ⁴He
 - Kinetic energy resolution for recoil ⁴He ~25 keV, angular resolution ~50 mrad
 - HMS (SHMS), momentum resolution ~0.1% (0.2%), angular resolution ~1 mrad (2 mrad)

Simulation – Projected Signals

- Simulated signals with reconstructed events in tagging detector and HMS & SHMS
 - Enough statistics for the diffractive minima with 30 days of beam time (E = 11 GeV, I = 50 uA)

Summary

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

- Coherent electro-production of J/ψ off a ⁴He target offers a unique opportunity
 - Explore the gluonic component of its matter distribution
 - Scan for the possible diffractive minima
- Such a measurement seems feasible at the existing electron beam facilities
 - Enough statistics with ~30 days beamtime at Hall C, JLab
 - Require a novel tagging detector development of nanowire recoil detector
 - Ongoing full simulations with physical and coincidental backgrounds
 - Ongoing simulations with large-acceptance detectors and future facilities/detectors
- A possible future experiment to probe the gluonic structure of ⁴He at JLab and EIC

Thank you!

Backup Slides

HMS and SHMS

• Low angle and low momenta from HMS & SHMS, it may change according to the practical limit

TABLE I: The basic parameters of the HMS, SOS and SHMS spectrometers.

Parameter	HMS	SOS	SHMS
Momentum Range (GeV/c)	0.5 - 7.3	0.3 - 1.7	1.5 - 11.0
Momentum Acceptance (%)	± 10	± 20	-10 - +22
Momentum resolution $(\%)$	0.10-0.15	< 0.1	0.03-0.08
Horiz. Angl. Accept.(mrad)	± 32	± 40	± 18
Vert. Angl. Accept. (mrad)	± 85	± 70	± 50
Solid angle (msr)	8.1	9.0	> 4.5
Maximum scattering angle	$\leq 80^{o}$	$\leq 168.4^{o}$	$\leq 40^{\circ}$
Minimum scattering angle	$\geq 10.5^{o}$	$\geq 13.3^{o}$	$\geq 5.5^{o}$
Horiz. Angl. res. (mrad)	0.8	0.5	0.5 - 1.2
Vertical Angl. res. (mrad)	1.0	1.0	0.3 - 1.1
Vertex Reconstr. res. (cm)	0.3	2-3	0.1 - 0.3

arXiv:1204.6413

SNSPD Properties and Characteristics

Quick Summary

- Photon energy thresholds as low as ~100 meV
- Timing jitter 20–40 ps easily achieved (current record of 3 ps)
- Reset times can be as low as 5-10 ns (potentially <1 ns in the future)
- Pixels on the order of 10x10 µm² to 30x30 µm²
- Fast, granular, high-rate pixel detector \rightarrow low occupancies
- Conveniently operates at LHe temperatures (T < 5K)
- Photon detection efficiencies >90%
- Expected to very radiation hard (more on this later)
- Can be fabricated with different geometry or pixel dimensions

Slide Courtesy of W. Armstrong

Strong Magnetic fields and high rates

Fixed Target Experiments

Superconducting Nanowire Particle Detectors

- Micro Range Telescope for Active LHe Target
- Recoil ³H/³He tagger for incoherent processes

