Threshold charmonium photoproduction with GlueX

FAILAR

Lubomir Pentchev (GlueX Collaboration) Uniqueness of exclusive threshold charmonium photoproduction - relation to gluonic properties of proton

- VMD reduces $\gamma p \rightarrow J/\psi p$ to $J/\psi p \rightarrow J/\psi p$
- If $m_c \rightarrow \infty$ interaction via gluon exchange, at threshold sensitive to trace of EMT (*Kharzeev, Satz, Syamtomov, Zinovjev 1996-1999*) and its contribution to proton mass (*Ji 1995*)
- GPD factorization valid for $m_c \rightarrow \infty$ at threshold (*Gun*, *Ji*, *Liu* 2021, *Hatta*, *Strikman* 2021)
- *t*-dependance of the amplitudes related to gluon gravitational form factors, $A_g(t)$, $B_g(t)$, $C_g(t)$, $\bar{C}_g(t)$ \rightarrow mass radius of the proton, D-term (Hatta, Kharzeev, Ji et al. 2018-2021)

Such ambitious program requires detailed studies of the reaction mechanism to justify these assumptions.

Hall D Apparatus at Jefferson Lab

- Photon beam from coherent Bremsstrahlung off thin diamond
- Photon energy tagged by scattered electron: 0.2% resolution
- Beam collimated at 75m, <35 μrad
- Intensity: ~ $5 \cdot 10^7$ $10^8 \gamma$ /sec above J/ψ threshold (8.2 GeV) – total ~320 pb⁻¹ in GlueX phase-I runs

GlueX detector

2T-solenoid, LH2 target Tracking (FDC,CDC), Calorimetry (BCAL,FCAL), Timing (TOF,SC)

- Hermetic detector: $1 120^{\circ}$ polar and full azimuthal acceptance
- Tracking: $\sigma_p/p \sim 1-5~\%$
- Calorimetry: $\sigma_{\!E}/E\sim 6\,\%\,/\sqrt{E}+2\,\%$

Exclusive reaction
$$\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$$

 GlueX detector has full acceptance for this reaction - direct measurement of the total cross section - no need to extrapolate to low/high t

• Electrons separated from pions by E/p – energy deposition in the calorimeters over measured momentum (pions >10³ times more than electrons)

e+e- invariant mass spectrum

- Tagged photon beam (0.2% energy resolution) and exclusivity of the reaction:
- Kinematic fit (constrained mostly by the recoil proton): 13 MeV mass resolution; no radiative tail
- J/ ψ yields extracted from fits of $M(e^+e^-)$ distributions
- BH(1.2 2.5 GeV) used for normalization

- Event-by-event weighting by luminosity
- Dots mean energy and t-value for the corresponding bin
- Results reported at mean energy for corresponding slice
- Deviations due to bin averaging included in the systematic errors

Preliminary GlueX results: total and differential cross-sections $\gamma p \rightarrow J/\psi p \rightarrow e^+e^-p$

• σ_{tot} increasing with energy approximately following the phase space,

however:

- Possible structure in $\sigma(8.6 9.6 GeV)$, the statistical significance of the two "dip" points is 2.6σ ; if include look-elsewhere effect - 1.3σ
- *t*-slopes close to lattice predictions for the $A_{g}(t)$ gravitational form factor,

however:

• Enhancement of $d\sigma/dt$ at high t (for the lowest energy slice)

Differential cross-sections - u-channel interpretation

- Assuming factorization in terms of Transition Distribution Amplitudes
- Hard scale provided by M_{w}^{2} and W^{2}
- The high-*t* enhancement for $E_{\gamma} = 8.2 9.28$ GeV may indicate uchannel contribution, but what about higher energies?

Pire, Semenov-Tian-Shansky, Shaikhutdinova, Szymanowski (2022)

GPD factorization models

0.8

0.7

-0.6

0.5

0.4

0.3

0.2

0.1

FIG. 3. Feynman diagram for the proposed CC mechanism. The dashed blue line pinpoints the open-charm intermediate state.

Higher-mass charmonium states at threshold with GlueX C-odd $(J/\psi, \psi')$ vs C-even (χ_c) production

- $\chi_{c1}(3511)$ and $\chi_{c2}(3556)$, 1⁺⁺ and 2⁺⁺ (1*P*), $E_{\gamma}^{thr} = 10.1$ GeV
- C-even charmonium states require 3g-exchange
- GlueX has observed also a small number of $\psi'(3686) (2S)$ states in $\gamma p \rightarrow \psi' p \rightarrow (e^+e^-) p$, $E_{\gamma}^{thr} = 10.9 \text{ GeV}$

Higher-mass charmonium states with GlueX C-odd $(J/\psi, \psi')$ vs C-even (χ_c) production

 $\gamma p \rightarrow \chi_c p \rightarrow (J/\psi \gamma) p \rightarrow (e^+ e^- \gamma) p$ $(t-t_{min}), GeV^2$ χ_c , C-even $\chi_{c1,2}$ $Cbkgd = -0.726 \pm 0.32$ Events / (0.005) 14 15 Nbkgd = 29.8 ± 6.3 Nchic1 = 56.5 ± 8.2 Nchic2 = 12.7 ± 4.5 $\begin{array}{l} m_{\chi_{c1}} - m_{J/\psi} = 0.415 \ G eV \\ m_{\chi_{c2}} - m_{J/\psi} = 0.460 \ G eV \end{array}$ mean1 = 0.4142 ± 0.0023 $mean2 = 0.4610 \pm 0.0052$ sigma = 0.0138 ± 0.0018 $+ N_{c2}e^{-\frac{(x-m2)^2}{2\sigma^2}}$ 10 8 11.4E_{γ}, GeV 10 10.2 10.4 10.6 10.8 11.2 11 GLUE 6 (t-t_min), GeV² 0.22 10 Preliminary 0.2 J/ψ , C-odd 4 -0.18 0.16 0.14 0.12 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.1 M(e⁺e⁻γ)-M(e⁺e⁻), GeV 0.08 • $\chi_{c1}(3511)$ and $\chi_{c2}(3556)$, 1⁺⁺ and 2⁺⁺ (1*P*), 0.06 0.04 $E_{\nu}^{thr} = 10.1 \, \text{GeV}$ 0.02 ${}^{11}_{E_{\gamma}}, GeV$ 8.5 9.5 10 10.5

- C-even charmonium states require 3g-exchange
- Dramatic difference in (E_{γ}, t) distribution w.r.t J/ψ

 $L(E_{\nu})$

weight

Summary

- The reported total and differential cross sections of J/ψ photoproduction near threshold are generally consistent with gluon exchange (t-slope, GPD factorization), except:
 - possible structure in the total cross section and
 - flattening of the differential cross section near threshold, the latter consistent with open charm exchange.
- It is important to separate between the gluon exchange, open-charm exchange, or any other contribution (resonances (P_c 's), u-channel) and possibly find a kinematic region that can be used to constrain gGPDs, extract proton gravitational form factors and study mass properties of proton.
- So far, from JPAC simultaneous analysis of gluon and open-charm exchange it is not possible to distinguish b/n two mechanisms, further theoretical work is needed.
- Experimentally:
 - higher statistics is needed to confirm the above features in the J/ψ cross sections
 - study C-even states at threshold to understand gluon-exchange mechanism
 - GlueX is currently running, expect $\times 4$ higher statistics

Back-ups

Differential cross-sections vs Lattice QCD

Dipole fits: $\frac{d\sigma/dt(0)}{(1-t/m_s^2)^4}$

$q_{c.m.}, GeV$ (J/ ψ p c.m.)	0.499	0.767	0.978
$d\sigma/dt(0), nb/GeV^2$	3.121 ± 2.23	2.303 ± 0.400	4.184 ± 0.541
m_s, GeV	1.089 ± 0.172	1.453 ± 0.074	1.314 ± 0.049

 $m_s \ of A_g(t), \ GeV$ Lattice QCD 1.13 ± 0.06

$d\sigma/dt(t)$ generally consistent with gluon exchange mechanism

GlueX results: comparison to Hall C (J/ ψ -007)

- Three GlueX energies compared to closest Hall C (J/ψ-007) energies
- Shown only 4 out 10 energies for Hall C common fit of all 10 used to disentangle contributions from $A_g(t)$ and $C_g(t)$ (B.Duran <u>https://arxiv.org/abs/2207.05212</u>)
- Scale uncertainties: 20% in GlueX and 4% in Hall C results
- Good agreement within the errors; note also differences in average energies

Open-charm, or gluon exchange, or resonances?

Experimental observations	open-charm exchange	gluon exchange	Resonance states
			(Pc ?)
possible structures in total	cusp-like structures at $\bar{D}^{(*)}\Lambda_c$	no structures X	structures, but not at
cross section	thresholds 🗸		LHCb Pc masses 样
$d\sigma/dt$ enhancement at high t	s,u -channel contribution? ✓	Not likely in t-channel X	s-channel contribution ✓
sharp t-slope	expect shallow t-dependance	consistent with gluon FFs as	s+t channel
	due to high mass exchange X	predicted on lattice 🗸	contributions 🗸
helicity conservation	?	yes?	?
beam asymmetry	?	small	?
naturality	unnatural D exchange ?	2g - natural parity exchange	?
		3g - unnatural (C-parity violation)	

SDME measurements to be performed

