Probing the Partonic Sturcture of $^4$He with Deep Exclusive Processes

30 Mar 2023, 11:30
20m
Centennial Room ABC (MSU Kellogg Center)

Centennial Room ABC

MSU Kellogg Center

Parallel talk WG2: Small-x, Diffraction and Vector Mesons WG2

Speaker

Whitney Armstrong

Description

When beginning to describe the structure of $^4$He, one often begins by invoking a description based on nucleon degrees of freedom -- a bound system with two protons and two neutrons -- leaving the partonic description at the level of each nucleon aside. However, the ultimate goal to understand $^4$He within Quantum Chromodynamics (QCD)k is to connect its intrisic properties with the fundamental degrees of freedom of QCD, quarks and gluons. $^4$He is a deeply bound spin-0 system and has only one chiral-even generalized parton distribution. Starting with a partonic description of the $^4$He nucleus, we can use deeply virtual Compton scattering (DVCS) to probe the quark transverse spacial distribution and also leverage deeply virtual meson production as an effective probe of the transverse gluon spacial distribution. Using the CLAS12 spectrometer at Jefferson Lab's Hall-B and a low energy recoil tracker (ALERT) to detect the recoiling $^4$He system, we will measure the coherent DVCS beam spin asymmetry and the coherent $\phi$ production cross section. We will discuss this opportunity for this experiment to study the quark and gluon structure of light nuclei and as a preview of physics anticipated at the Electron-Ion Collider.

Submitted on behalf of a Collaboration? Yes

Primary author

Presentation materials