

Zhiwen Zhao
SoLID Collaboration

Jefferson Lab

S(ㅇㅇㄴID Jefferson Lab

SoLID (Solenoidal Large Intensity Device)

Full exploitation of JLab 12 GeV upgrade with broad physics program

Lumi $\sim 1 \mathrm{e}^{39} / \mathrm{cm}^{2} / \mathrm{s}$ (baffled geometry)
> Standard Model test and hadron structure

- PVDIS on both deuterium and hydrogen
solid.jlab.org

High Luminosity Large Acceptance

Lumi $\sim 1 \mathrm{e}^{37} / \mathrm{cm}^{2} / \mathrm{s}$ (open geometry)
$>3 \mathrm{D}$ hadron imaging
TMD (SIDIS on both neutron and proton)

- GPD (DVCS, DEMP, TCS,DDVCS) proton mass and gluonic interaction $\square \mathrm{J} / \psi$ production at threshold

SoLID J/ ψ and TCS

E12-12-006: Near Threshold J/ ψ production on LH2 target 60 days, rating A run group E12-12-006A: TCS Letter of Intent: DDVCS

E12-12-006: Near Threshold J/ ψ production on LH2 target

Ultimate factory for near-threshold J/ $/$

$50+10$ days of $3 \mu \mathrm{~A}$ beam on a 15 cm long LH2 target $\left(10^{37} / \mathrm{cm}^{2} / \mathrm{s}\right)$ Ultra-high luminosity: $43.2 \mathrm{ab}^{-1}$

$$
\mathbf{e} \mathbf{p} \rightarrow \mathrm{e}^{\prime} \mathbf{p}^{\prime} \mathrm{J} / \psi\left(\mathbf{e}^{-} \mathbf{e}^{+}\right)
$$

$$
\gamma \mathbf{p} \rightarrow \mathbf{p}^{\prime} \mathrm{J} / \psi\left(\mathbf{e}^{-} \mathbf{e}^{+}\right)
$$

Measurements

- Electro-production:
- 4-fold: detect decay e- e+ pair, scattered e- and recoil proton - 3-fold: detect decay e- ${ }^{+}$pair, scattered e^{-}or recoil proton -Photo-production:
- 3-fold: detect decay e- e^{+}pair and recoil proton
- Trigger on decay e- ${ }^{+}$pair only
- Wide kinematic coverage
S. Joosten Argonne ©

S(C)LID Jefferson Lab

SoLID J/ ψ projection

Precision at high t crucial for extrapolations to the forward limit (exponential, dipole, triple, ...)

6

S. Joosten Argonne

J/ ψ experiments at JLab compared

	GlueX HALL D	HMS+SHMS HALL C	CLAS 12 with upgrade HALL B	SoLID HALL A
J/ Ψ counts (photo-prod.)	469 published phase I + II	2k electron channel	14k 2k muon channel	804k
J/ ψ Rate (electro- prod.)	N/A	N/A	2k	21k
Features	Good reach to threshold. No high-t reach.	Can reach high-t only at higher energies. Low statistics.	No high-t reach. Electroproduction low statistics.	Enough luminosity to reach high t. High precision.
When?	Finished/Ongoing	Finished	Ongoing/Proposed	Future

${ }^{1}$ The CLAS12 projected count rates assume the proposed CLAS12 luminosity upgrade to $2 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{s}$

E12-12-006A: TCS with circular polarized beam and LH2 target

sharing beam time with $\mathrm{J} / \mathrm{psi}$ run using same trigger on decay $\mathrm{e}^{-} \mathrm{e}^{+}$pair only

$$
\gamma \mathbf{p} \rightarrow \gamma^{*}\left(\mathbf{e}^{-} \mathbf{e}^{+}\right) \mathbf{p}^{\prime}
$$

- Motivation
- Timelike Compton Scattering (TCS) access the same GPDs like DVCS and test universality
- Access real and imaginary part of GPD H through CFF
- New observables for global GPD fits
- Status
- exploration at CLAS 6 GeV
- First result at CLAS12 published at PRL, 127, 262501 (2021) obtain nonzero beam polarized asymmetry $A_{L U}$ and forward backward asymmetry $A_{\text {FB }}$
- Limited by low statistics

Kinematics

CLAS12 result

S(ㅇㅇㄴID Jefferson Lab

E12-12-006A: TCS with circular polarized beam and LH2 target

- SoLID TCS will have at least 1 order higher statistics than CLAS12 and usher TCS study into precision era with multi-dimensional binning
- SoLID has 250 times more integrated luminosity than the CLAS12 TCS published result
- SoLID acceptance to TCS events is about $1 / 4$ of CLAS12. But with full azimuthal coverage, (ideal for the forward backward asymmetry)
- Crosssection measurement (moment)
- SoLID TCS could lead to study of NLO correction
$0.100<\eta<0.140$

$0.195<\eta<0.210$

$0.140<\eta<0.175$

Q'2 $\left(\mathrm{GeV}^{2}\right)$

$0.175<\eta<0.195$

SoLID TCS coverage

$$
R=\frac{2 \int_{0}^{2 \pi} d \varphi \cos \varphi \frac{d S}{d Q^{2} d t d \varphi}}{\int_{0}^{2 \pi} d \varphi \frac{d S}{d Q^{2} d t d \varphi}}
$$

S(ㅇㅇㄴID Jefferson Lab

DDVCS with circular polarized beam and LH2 target

Letter of Intent 2015, under study

- Double Deeply Virtual Compton Scattering (DDVCS) explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS
- SoLID with muon detectors at forward and large angle, enables DDVCS measurements with both polarized electron and positron beams at 11 GeV
- Sharing running time and increase statistics for J / ψ and TCS

$$
\begin{aligned}
\xi^{\prime} & =\frac{Q^{2}-Q^{\prime 2}+t / 2}{2 Q^{2} / x_{\mathrm{B}}-Q^{2}-Q^{\prime 2}+t} \\
\xi & =\frac{Q^{2}+Q^{\prime 2}}{2 Q^{2} / x_{\mathrm{B}}-Q^{2}-Q^{\prime 2}+t}
\end{aligned}
$$

DDVCS with circular polarized beam and LH2 target

coverage

projection

$$
\begin{aligned}
A_{L U}^{ \pm}(\phi) & =\frac{1}{\lambda^{ \pm}} \frac{d^{5} \sigma_{+}^{ \pm}-d^{5} \sigma_{-}^{ \pm}}{d^{5} \sigma_{+}^{ \pm}+d^{5} \sigma_{-}^{ \pm}} \\
& =\frac{d^{5} \widetilde{\sigma}_{D D V C S} \mp d^{5} \widetilde{\sigma}^{\mathrm{INT} 1}}{d^{5} \sigma_{B H_{1}}+d^{5} \sigma_{B H_{2}}+d^{5} \sigma_{D D V C S} \mp d^{5} \sigma_{I N T_{1}}}
\end{aligned}
$$

(15) $\quad A_{U U}^{C}(\phi)=\frac{\left(d^{5} \sigma_{+}^{+}+d^{5} \sigma_{-}^{+}\right)-\left(d^{5} \sigma_{+}^{-}+d^{5} \sigma_{-}^{-}\right)}{d^{5} \sigma_{+}^{+}+d^{5} \sigma_{-}^{+}+d^{5} \sigma_{+}^{-}+d^{5} \sigma_{-}^{-}}$
$=\frac{d^{5} \sigma_{I N T_{1}}}{d^{5} \sigma_{B H_{1}}+d^{5} \sigma_{B H_{2}}+d^{5} \sigma_{D D V C S}}$
EPJA 57, 240 (2021)
S(ㅇㅇㄴID Jefferson Lab 11

Summary

- SoLID with open geometry has a broad dilepton physics program
- J/ ψ near threshold (approved)
- TCS (approved)
- DDVCS (under study)
- High luminosity and large acceptance are keys to make those next generation experiments possible with multidimensional binning
- More ideas (e.g. deuterium and other nuclei target)

Strong Collaboration

- $270+$ collaborators, $70+$ institutes from 13 countries
- Strong theory support
- Active development and validation of the pre-conceptual design and physics programs

