

Zhiwen Zhao SoLID Collaboration

Jefferson Lab

SoLID (Solenoidal Large Intensity Device)

Full exploitation of JLab 12 GeV upgrade with broad physics program

Lumi ~1e³⁹/cm²/s (baffled geometry)

- > Standard Model test and hadron structure
 - □ PVDIS on both deuterium and hydrogen

solid.jlab.org

High Luminosity Large Acceptance

Lumi ~1e³⁷/cm²/s (open geometry)

- > 3D hadron imaging
 - □ TMD (SIDIS on both neutron and proton)
 - □ GPD (DVCS, DEMP, TCS,DDVCS)
- proton mass and gluonic interaction
- \Box J/ ψ production at threshold

SoLID J/ψ and TCS

E12-12-006: Near Threshold J/ψ production on LH2 target 60 days, rating A

run group E12-12-006A: TCS

Letter of Intent: DDVCS

E12-12-006: Near Threshold J/ψ production on LH2 target

Ultimate factory for near-threshold J/ψ

50+10 days of 3μA beam on a 15cm long LH2 target (10³⁷/cm²/s) **Ultra-high luminosity**: 43.2ab⁻¹

$$e p \rightarrow e' p' J/\psi(e^- e^+)$$

Measurements

- Electro-production:
 - 4-fold: detect decay e⁻ e⁺ pair, scattered e⁻ and recoil proton
 - 3-fold: detect decay e⁻ e⁺ pair, scattered e⁻ or recoil proton
- •Photo-production:
 - 3-fold: detect decay e⁻ e⁺ pair and recoil proton
- Trigger on decay e- e+ pair only
- Wide kinematic coverage

SoLID J/ψ projection

Precision at high t crucial for extrapolations to the forward limit (exponential, dipole, triple, ...)

S. Joosten

J/ψ experiments at JLab compared

	GlueX HALL D	HMS+SHMS HALL C	CLAS 12 with upgrade ¹ HALL B	SoLID HALL A
J/ψ counts (photo-prod.)	469 published ≥ ~10k phase I + II	2k electron channel 2k muon channel	14k	804k
J/ψ Rate (electro- prod.)	N/A	N/A	1k	21k
Features	Good reach to threshold. No high-t reach.	Can reach high-t only at higher energies. Low statistics.	No high-t reach. Electroproduction low statistics.	Enough luminosity to reach high t. High precision.
When?	Finished/Ongoing	Finished	Ongoing/Proposed	Future

¹The CLAS12 projected count rates assume the proposed CLAS12 luminosity upgrade to 2x10³⁵/cm²/s

E12-12-006A: TCS with circular polarized beam and LH2 target

sharing beam time with J/psi run using same trigger on decay e⁻ e⁺ pair only

$$\gamma p \rightarrow \gamma^*(e^-e^+) p'$$

- Motivation
 - Timelike Compton Scattering (TCS) access the same GPDs like DVCS and test universality
 - Access real and imaginary part of GPD H through CFF
 - New observables for global GPD fits
- Status

CLAS12

result

- exploration at CLAS 6GeV
- First result at CLAS12 published at PRL, 127, 262501 (2021) obtain **nonzero** beam polarized asymmetry A_{LU} and forward backward asymmetry A_{FR}
- · Limited by low statistics

E12-12-006A: TCS with circular polarized beam and LH2 target

- SoLID TCS will have at least 1 order higher statistics than CLAS12 and usher TCS study into precision era with multi-dimensional binning
 - SoLID has 250 times more integrated luminosity than the CLAS12 TCS published result
 - SoLID acceptance to TCS events is about ¼ of CLAS12.
 But with full azimuthal coverage, (ideal for the forward backward asymmetry)
 - Crosssection measurement (moment)
- SoLID TCS could lead to study of NLO correction

SoLID TCS coverage

$$R = \frac{2\int_{0}^{2\pi} d \, \varphi \cos \varphi \frac{dS}{dQ^2 \, dt \, d \, \varphi}}{\int_{0}^{2\pi} d \, \varphi \frac{dS}{dQ^2 \, dt \, d \, \varphi}}$$

DDVCS with circular polarized beam and LH2 target

Letter of Intent 2015, under study

- Double Deeply Virtual Compton Scattering (DDVCS) explores wide off-axis kinematic region of GPDs, beyond DVCS and TCS
- SoLID with muon detectors at forward and large angle, enables DDVCS measurements with both polarized electron and positron beams at 11GeV
- Sharing running time and increase statistics for J/ψ and TCS

$e^- p \rightarrow e^- \gamma^* (\mu^- \mu^+) p'$

$$\xi' = \frac{Q^2 - Q'^2 + t/2}{2Q^2/x_B - Q^2 - Q'^2 + t}$$
$$\xi = \frac{Q^2 + Q'^2}{2Q^2/x_B - Q^2 - Q'^2 + t}$$

DDVCS with circular polarized beam and LH2 target

Summary

- SoLID with open geometry has a broad dilepton physics program
 - J/ψ near threshold (approved)
 - TCS (approved)
 - DDVCS (under study)
- High luminosity and large acceptance are keys to make those next generation experiments possible with multidimensional binning
- More ideas (e.g. deuterium and other nuclei target)

Strong Collaboration

- 270+ collaborators, 70+ institutes from 13 countries
- Strong theory support
- Active development and validation of the pre-conceptual design and physics programs

