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Neutrinos and Oscillation Physics (Part One)

Paths to Beyond-the-Standard-Model Physics
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coefficients directly describing the splitting of the I

mass states and asymmetry between neutrino
and anti-neutrinos!

Leptonic CP-violation serves as a proof of
concept for the matter-antimatter asymmetry!
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Current Generation of Long-Baseline Experiments
Current State-of-the-Art Detectors and Measurements
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NOVA and T2K are dual detector oscillations experiments currently taking data and
producing results. As of 2020, NOVA and T2K are leaders in resolving oscillation
parameters and leptonic CP-violation in the neutrino sector.
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Uncertainties in an Oscillation Analysis

A Brief Look at Uncertainties on ¢ NOVA
T2K

Detector Calibration

/ -.4‘

Neutrino Cross Sections

Neutron Uncertainty

Near-Far Uncor.

Lepton Reconstruction

: Supplementary Table 1: The systematic uncertainty on the predlcted relative number of electron neutrino and electron antineutrino —

candidates in the Super-K samples with no decay electrons. Beam Flux
Type of Uncertainty ve/v. Candidate Relative Uncertainty (%) - —
Super-K Detector Model 1.5 Detector Response
Pion Final State Interaction and Rescattering Model 1.6
Neutrino Production and Interaction Model Constrained by ND280 Data 2.7 SyStematiC Uncertainty
Electron Neutrino and Antineutrino Interaction Model 3.0 | ]
Nucleon Removal Energy in Interaction Model 3.7 StatiSticaI Uncertainty
Modeling of Neutral Current Interactions with Single v Production 15 A L L .
Modeling of Other Neutral Current Interactions 0.2 -0.5 . 0 . 0.5
Total Systematic Uncertainty 6.0 Uncerta|nty N 6CP/TC

Source of Uncertainty sin?6q5 dop /T |[Am3,| (x1073 eVQ)
Beam Flux +0.00034 / -0.0008  +0.0023 / -0.0099 +0.0014 / -0.0023
TH[ MIRR“R Detector Calibration +0.005 / -0.025 +0.028 / -0.17 +0.019 / -0.019
o Detector Response +0.0016 / -0.0021  +0.0041 / -0.0035  +0.0067 / -0.0085
CRAEK'B TR Lepton Reconstruction +0.0026 / -0.002 +0.006 / -0.016 +0.0094 / -0.015
: ‘ )= Near-Far Uncor. +0.002 / -0.0016 +0.012 / -0.028 +0.0013 / -0.0048
Anindication of matter- antimatter :V%H—.’_—“fﬁ# Neutrino Cross Sections  +0.0027 / -0.0034 +0.044 / -0.07 +0.0066 / -0.012
symmetryviolationinnéutrinos « R e Neutron Uncertainty +0.0049 / -0.0078  40.0012 / -0.042 +0.011 / -0.017
B ; : | " 2 Systematic Uncertainty +0.0083 / -0.027 +0.054 / -0.19 +0.024 / -0.028
Statistical Uncertainty +0.022 / -0.033 +0.21 / -0.87 +0.043 / -0.055

~19% of the total systematics budget

As of 2020, Iargest uncertalntles are due to statistics limited, but the next
generation of experiments will surpass the precision of current experiments! How
to control the systematics budget?



The Neutrino-Nucleus Cross Section Problem (Part One)

Where is the Problem? o @ tepton
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Many neutrino scattering measurements but to first order must understand interplay between four
different types of scattering (QE/Elastic, RES, DIS, MEC).

To second order, must also deal with FSI effects (nuclear matter effects, absorption, interaction with
cold nuclear matter)!



The Neutrino-Nucleus Cross Section Problem (Part One)
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Many neutrino scattering measurements but to first order must understand interplay between four

different types of scattering (QE/Elastic, RES, DIS, MEC).

To second order, must also deal with FSI effects (nuclear matter effects, absorption, interaction with

cold nuclear matter)!
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The Neutrino-Nucleus Cross-Section Problem (Part Two)
Significant Problems with Old Bubble Chamber Data
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Statistics in the relevant regions for Long-Baseline experiments are low ~ 0(104) and systematic
uncertainties are high.

Generator predications based on these data have low exclusionary power at DUNE/Hyper-K
precision.



The Next Generation of Long-Baseline Experiments
DUNE: the future long-baseline oscillation experiment
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The DUNE Near Detector (Phase 2)

Necessary to Constrain Beam System
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ND-LAr functionally similar to FD modules with the same target nucleus.
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ND-GAr gives charge separation and some analysis of secondary interactions with the same target nucleus.
System for on-Axis Neutrino Detection (SAND) serves as always on beam monitoring system with CH

From the ND CDR, 50 tons of LAr at 1.2 MW neutrino beam should yield about 59 million uﬂCC events per

year.



The LBNF/DUNE Beam

Super High-Statistics Neutrino Beam
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DUNE-PRISM will have the Argon detectors move in order to deconvolve the flux from the

Cross sections.
Will constrain beam flux shape and normalization to ~1%!
Outside possibility of moving to higher energies!



Historic Chamber Design

How Did the “Dirty” Chambers Work?  cowenrionas caveras
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The Current Generation of Chambers
The Scmtlllatlng Bubble Chamber (SBC)
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SBC designed to use Xenon
doped Liquid Argon as the
working fluid

“Clean” style inner jar in
pressure vessel

Refrigerator integrated into
flange and attached to pressure
vessel along with cameras.

Hydraulic cylinder attached to
pressure vessel and a carbon
flouride hydraulic fluid is used to
offset the temperature gradient.

Achievable live times ~1 hour.



Where to Put It?
The Biggest Challenge Toward Building It!

TARGET HALL
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Problem 1:—Detectt>r would be in direct path of LBNF beam, 62m underground.

DOE safety guidelines allow only 15 gal/~57L to be used underground without additional safety measures.

Problem 2: There doesn’t seem to be much space in the ND Hall underground for
detector or supporting equipment.

Build somewhere else (Dedicated Underground Hall or On the Surface?)



Measurement of Nuclear Modification with Neutrinos
Contributions to Nucleon Structure
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Measurement of the NuTeV Anomaly
Another Path to Beyond the Standard Model Physics

Neutrino DIS has clean access to the weak mixing/Weinberg angle because it only

couples to W+ and Z!

NuTeV Experiment measured the Paschos-Wolfenstein ratio on Fe through a comparison
of CC to NC events for /v and found a ~ 3o offset from the standard model!
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Neutrinos as a Novel Probe

Precision Selection of Quark Flavor
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Complementarity especially attractive in DIS region where quark flavor is selectable!

Clean probe of strangeness, path toward strange form factors.



Spin and Polarization

Theoretical Expansion to Scattering and the Concept of the Nucleon
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Formulation of GPDs from mapping of the nucleon gives new dimensions to scattering
and information about the complicated spin structure of the nucleon.



Summary and Conclusion

Current neutrino cross-section sample underlying neutrino event generators does not
have the precision to effectively constrain measurements from the next generation of
long-baseline neutrino oscillations experiments.

Next generation experiments will have their own robust cross-section measurements,
but measurements on light nuclear targets will allow for a better understanding of the
underlying nucleon structure and a reduction in systematics.

A bubble chamber physics program Is robust, novel, and complementary to
measurements that will be done by the Electron lon Collider

Building a 5L Hydrogen Modern Modular Bubble Chamber Design
Study at Fermilab Right Now!

Project Management (Notion) Please checkout the Shnowmass White Papers!
Document Server (Google Drive) Hydrogen/Deuterium Cross Sections: https://arxiv.org/abs/2203.11298
Meetings Thursdays at 10 AM CT Bubble Chamber: https://arxiv.org/abs/2203.11319
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