MICHIGAN STATE UNIVERSITY®

BSM physics using photon-photon fusion processes in UPC in Pb+Pb collisions with the ATLAS detector

Klaudia Maj, AGH-UST for ATLAS Collaboration East Lansing, 30th Mar 2023

Ultraperipheral heavy-ion collisions

- Ultraperipheral heavy-ion collisions (UPC) provide very clean environment to study photon-photon interactions
 - Electromagnetic (EM) fields associated with relativistic ions treated as photon fluxes
 - Described in a Equivalent Photon Aproximation (EPA) framework
 - Equivalent photon flux scales with Z²
 - Pb+Pb collisions at LHC are a superb source of high energy photons
 - Excellent tool to study rare processes and to search for beyond Standard Model (BSM) physics
- Advantages of UPC over the proton-proton (pp) collisions:
 - Z⁴ enhancement of cross sections in Pb+Pb wrt pp system
 - Very low hadronic pileup exclusivity selections
 - Low p_T thresholds in trigger and offline reconstruction

Motivation - BSM searches

- This talk covers following results from 5.02 TeV UPC Pb+Pb collisions from ATLAS:
 - Observation of the $\gamma\gamma \rightarrow \tau^+\tau^-$ process in Pb+Pb collisions and constraints on the τ -lepton anomalous magnetic moment with the ATLAS detector [arXiv:2204.13478], accepted by PRL
 - Constraints on au-lepton anomalous magnetic moment
 - Its value is sensitive to many BSM models (lepton compositeness, supersymmetry $\delta a_{\tau} \sim m_{\tau}^2/M_S^2$, TeV-scale leptoquarks, ...)

- Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb⁻¹ of Pb+Pb data with the ATLAS detector [JHEP 03 (2021) 243]
 - New particles can enter the loop
 - Light-by-light (LbyL) cross-sections can be modified by various BSM phenomena (Born-Infeld extensions of QED, space-time non-commutativity in QED, extra spatial dimensions, ...)

Anomalous magnetic moment

- Charged particles with spin have an intrinsic magnetic moment: $\vec{\mu} = g \frac{q}{2m} \vec{S}$
- For leptons Dirac equation predicts g = 2, but higher order corrections lead to $g \neq 2$

- F. del Aguila, F. Cornet, J.I Illana [PLB 271 (1991) 256]
- L. Beresford, J. Liu [PRD 102 (2020) 113008]
- M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek [PLB 809 (2020) 135682]

Measurement overview

- Signal τ -leptons are low-energetic, typically with $p_T < 10$ GeV
- No standard ATLAS identification of $\tau\text{-leptons}$ is used
 - Instead events classified based on the charged τ -lepton decay products
- Three signal categories: $\mu + e$, $\mu + track$, $\mu + 3$ tracks
- Single muon trigger used to record signal events with muon p_T > 4 GeV
- Exclusivity requirements:
 - veto on forward neutron activity (using 0n0n configuration based on ZDC signal)
 - for μ + track and μ + 3 tracks: veto on additional tracks and low-p_T clusters
- Main background contributions are from dimuon production and diffractive photonuclear interactions

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

 μ + 3 track

Signal region distributions

μ **3T-SR:** N_{obs}=85, N_{bkg}=9±3 Events / 0.1 GeV Pb+Pb √s_{NN}=5.02 TeV ATLAS Data, 1.44 nb⁻¹ µ3T-SR 20 $\rightarrow \tau \tau$ →µµ 15 photonuclear Pred. stat. uncertainty 10 0 0.2 0.6 0.8 1.2 1.4 0.4 1.6 m_{trks} [GeV]

- Good agreement of pre-fit predictions with data
- Total of about 650 events across all SRs
- Small background contributions

8

Observation of $\gamma\gamma \rightarrow \tau\tau$ in Pb+Pb

- The $\gamma\gamma \rightarrow \tau\tau$ signal strenght and a_{τ} value is extracted using a profile likelihood fit using the muon p_T distribution in the three SRs and 2µ-CR
 - Dimuon control region ($\gamma\gamma \rightarrow \mu\mu$ events) used to reduce systematic uncertainty from the photon flux
- Build templates for different a_{τ} values by reweighting signal MC using weights from [PLB 809 (2020) 135682]
- Clear observation (>> 5 σ) of $\gamma\gamma \rightarrow \tau\tau$ process at the LHC

Results: a_{τ}

- The best fit value is a_{τ} = -0.041 with corresponding 95% CL interval being (-0.057, 0.024)
- Constraints on a_{τ} have similar precision as those observed by DELPHI [EPJC 35 (2004) 159]
- Statistical uncertainties dominant \rightarrow expected to improve with Run-3 data
- Leading systematic uncertainties: trigger efficiency, τ decay modeling

Light-by-light scattering

- Light-by-light (LbyL) scattering is a very rare QED process
- Several LbyL measurements performed with the LHC Pb+Pb UPC data:

ATLAS: 2015: [Nature Physics 13 (2017) 852], 2018: [PRL 123 (2019) 052001] **2015+2018:** [JHEP 03 (2021) 243]

CMS: 2015: [PLB 797 (2019) 134826]

- Exclusive production of two photons $(E_T > 2.5 \text{ GeV}, |\eta| < 2.37)$ with no activity observed in the detector
 - Invariant diphoton mass $m_{\gamma\gamma} > 5$ GeV, low diphoton $p_T^{\gamma\gamma} < 1$ GeV, low diphoton acoplanarity: $A_{\phi} = 1 - |\Delta \phi| / \pi < 0.01$
 - Veto on any extra low-p⊤ tracks
- Background: $\gamma \gamma \rightarrow e^+ e^-$, central exclusive production of $gg \rightarrow \gamma \gamma$

Background: e⁺e⁻ event candidate

Light-by-light scattering: cross sections 13

 Cross-section is measured in a fiducial phase space, defined by the requirements reflecting event selection

Measured fiducial cross section: $\sigma_{\rm fid} = 120 \pm 17 \text{ (stat.)} \pm 13 \text{ (syst.)} \pm 4 \text{ (lumi.)} \text{ nb}$ Theory predictions: $\sigma_{\rm fid}^{\rm theory1} = 78 \pm 8 \text{ nb} \text{ (SuperChic 3 MC)}$ $\sigma_{\rm fid}^{\rm theory2} = 80 \pm 8 \text{ nb} \text{ (Phys. Rev. C 93 (2016) 044907)}$

- Differential fiducial cross-sections measured in diphoton: $m_{\gamma\gamma}$, $|y_{\gamma\gamma}|$, average $p_{T^{\gamma}}$ and $|\cos\theta^*|$
- The unfolded differential fiducial cross-sections are compared with the predictions from SuperChic v3.0
 - Good agreement in shape, differences in the normalisation

Search for ALP production

- LbyL scattering can be used to search for processes beyond the Standard Model, such as axion-like particles (ALP)
- ALP are hypothetical, (pseudo-)scalar particles that appear in many theories with a spontaneously broken global symmetry
- ALPs may have identical signature as SM LbyL scattering: $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$
- ALP production would lead to an excess of scattering events with diphoton mass equal to the mass of a
- The search performed using $m_{\gamma\gamma}$ distribution

Events / GeV

Search for ALP production

• ALP contribution fitted individually for every mass bin using a maximum-likelihood fit

15

- No significant deviation from the background-only hypothesis observed
- The upper limit on the ALP cross-section and ALP coupling $1/\Lambda_a$ at 95% confidence level is established
- The obtained exclusion limits are the strongest so far in the mass range of $6 < m_a < 100 \mbox{ GeV}$

Summary

- UPCs can be used to probe rare SM processes and search for BSM phenomena
- ATLAS provides a final measurement of exclusive ditau production in Pb+Pb UPC at the LHC with above 5σ significance
- The measurement of the τ -lepton anomalous magnetic moment is competitive with previous best limit from the LEP era
 - Improvement in precision expected with Run-3 data
- Light-by-light scattering well established by ATLAS experiment at the LHC
- The LbyL ATLAS result set the most stringent limits to date on ALP production for masses in the range 6-100 GeV
 - Excellent prospects for new searches with Run-3 and Run-4 data

[arXiv:1812.06772]

 All results from ATLAS Heavy Ion available at: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u>

Research project partly supported by program "Excellence initiative – research university" for the AGH University of Science and Technology", by the National Science Centre of Poland under grant number UMO-2021/40/C/ST2/00187 and by PL-GRID infrastructure."

Additional slides

ATLAS detector

 η - broad pseudo rapidity coverage

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

p_T - transverse momentum

$$p_T = \sqrt{p_x^2 + p_y^2}$$

SR MC cutflow

Requirement	Number of $\gamma \gamma \rightarrow \tau \tau$ events
Common selection	
$\sigma \times \mathcal{L}$	352611
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}}$	28399
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}} \times w_{\text{SF}}$	35383
Pass trigger	1840
$E_{\rm ZDC}^{A,C} < 1 { m TeV}$	1114
µ1T-SR	
$N_{\mu}^{\text{preselected}} = 1$	1023
$N_{\mu}^{\rm signal} = 1$	900
$N_e^r = 0$	867
$N_{\rm trk}$ (with $\Delta R_{\mu,\rm trk} > 0.1$) = 1	575
Zero unmatched clusters	552
\sum charge = 0	546
$p_{\rm T}^{\mu,{\rm trk}} > 1 {\rm ~GeV}$	503
$p_{\rm T}^{\mu,{\rm trk},\gamma} > 1 {\rm ~GeV}$	482
$p_{T}^{\mu,\text{trk,clust}} > 1 \text{ GeV}$	462
$A_{\phi}^{\mu, \text{trk}} < 0.4$	459
μ3T-SR	
$N_{\mu}^{\text{preselected}} = 1$	1023
$N_{u}^{\text{signal}} = 1$	900
$N_e^{\mu} = 0$	867
N_{trk} (with $\Delta R_{\mu,\text{trk}} > 0.1$) = 3	88.1
Zero unmatched clusters	85.2
\sum charge = 0	84.1
$m_{\rm trks} < 1.7 { m GeV}$	83.4
$A_{\phi}^{\mu,\mathrm{trks}} < 0.2$	83.3
μe-SR	
$N_{\mu}^{\text{signal}} = 1$	958
$N_e = 1$	33.9
N_{trk} (with $\Delta R_{\mu/e,\text{trk}} > 0.1$) = 0	32.6
\sum charge = 0	32.5

Results: Signal strength

- Fit of $\gamma\gamma \rightarrow \tau\tau$ signal strength assuming SM value for a_{τ} : $\mu_{\tau\tau}$ = observed yield / SM expectation
- Result for each signal region compatible with unity
- Combined fit reaches 5% precision, limited by statistical uncertainties

Background processes

 $\gamma\gamma
ightarrow \mu\mu(\gamma)$ production

Background processes: $\gamma\gamma \rightarrow \mu\mu(\gamma)$ production 23

- Background from $\gamma\gamma \rightarrow \mu\mu(\gamma)$ production estimated using MC simulation
- Validation of modeling performed in dimuon control region (2 μ -CR)
- Normalization off by +6% with SuperChic3 photon flux (Starlight: -13%)
- Good description of FSR emissions seen in $p_T^{\mu\mu}$ distribution tail

Background processes: diffractive photo nuclear events

24

- Data-driven estimation of diffractive photonuclear events in μ 1T-SR and μ 3T-SR
- Templates built from control regions similar to SRs, but requiring an additional track with $p_T < 0.5$ GeV and allowing 0nXn ZDC events
- Normalization: relax cluster veto \rightarrow use region with 4-8 unmatched clusters
- Kinematic distributions in this region well described by the CR templates

Systematic uncertainties in a_{τ}

- Detector related
 - Muon trigger efficiency
 - Muon/electron reconstruction/ID efficiency and calibration
 - Track reconstruction efficiency
 - Cluster reconstruction efficiency and calibration
- Background
 - Photonuclear background template variation
- Theory
 - Photon flux modeling (SuperChic3 vs. Starlight)
 - τ decay modelling (Tauola vs. Pythia8)
 - OnOn ZDC reweighing variation

LbyL Background

- Various background sources considered, the largest contribution from:
 - Exclusive dielectron production $\gamma\gamma \rightarrow e^+e^-$
 - Central exclusive production (CEP) $gg \rightarrow \gamma\gamma$
- Main background sources are estimated using data-driven techniques
- Shapes of the distributions are in good agreement but data excess visible in both distributions

Signal categories - ZDC selection

- Different processes present different activity in the forward region:
 - Exclusive dilepton production - ions stay intact
 - Background events with nuclear breakup
- Three classes defined, based on the signal in the ZDC

- The association between given ZDC signal and given process is nontrivial
 - Migrations due to ion excitation and presence of EM pile-up

Search for ALP production with ATLAS AFP 28

- A search for ALP carried out by ATLAS using pp collisions in the diphoton mass range $m_{\gamma\gamma} = [150, 1600]$ GeV
- Exploit events with centrally produced photon pairs tagged by forward scattered protons
- Forward-scattered protons detected by the ATLAS Forward Proton (AFP) detector
- No signal is observed
 - Data consistent with a combinatorial SM background
- Upper limit on the ALP coupling constant to two photons set in the range 0.04-0.09 TeV⁻¹ at 95% confidence level

ATLAS-CONF-2023-002