



# Searches for rare top quark production and decay processes with the ATLAS experiment

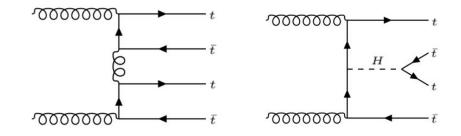
DIS 2023 28/03/23 Will George University of Birmingham

## Introduction

#### **TOP QUARK PHYSICS**

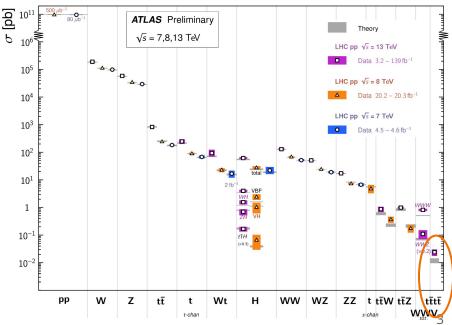
- Heaviest known elementary particle
  - Large coupling to Higgs boson
  - Potentially large couplings to hypothetical new particles
- ATLAS Run 2 dataset (139 fb<sup>-1</sup>) provides huge sample of top quark physics events
  - Measure rare SM processes + directly search for new physics

#### **IN THIS TALK**


- **Observation** of 4 top quark production!
- Searches for FCNC couplings of the top quark:  $tq\gamma$ , tqg, tqH, tqZ
- Search for charged lepton flavour violating couplings of the top quark



# Four top quark production (4*t*)


JHEP11(2021)118

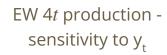


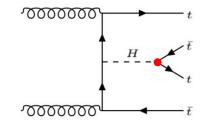


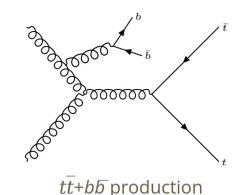
**Standard Model Total Production Cross Section Measurements** 

Status: February 2022




## Why look for 4*t* production?


#### Motivation


- Very rare SM process ( $\sigma_{4t}^{SM} = 12.0 \pm 2.4 \text{ fb}$ )
- Many BSM models predict enhancements to  $\sigma_{4t}$ 
  - E.g. SUSY, 2HDM
  - Sensitivity to four-fermion EFT couplings
- $\sigma_{4t}$  sensitive to CP properties of  $y_t$

#### **Measurement channels**

- 1ℓ/2ℓOS (57% BR)
  - Large irreducible  $t\bar{t}$ +HF(significant theoretical uncertainties)
- 2łSS/3ł (13% BR)
  - Low background (dominated by  $t\bar{t}H/Z/W$  + jets)

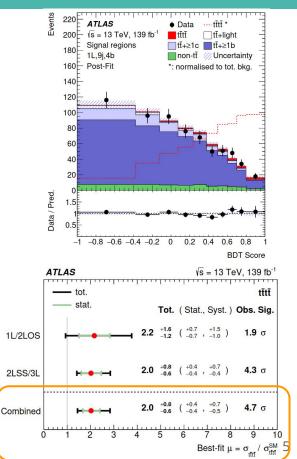








#### **Evidence for** *4t* **production** (JHEP11(2021)118)



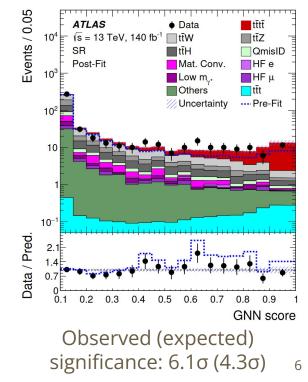

- Measurement performed in 1ℓ/2ℓOS channel
  - Events categorised by jet multiplicity and b-tagging purity
  - Resolve different flavour components of  $t\bar{t}$ +HF
  - Sequential kinematic reweighting to correct mis-modelling in each component
  - Profile likelihood fit to BDT discriminant
  - Limited by modelling of signal and  $t\bar{t}$ +HF
- Signal-like excess over background: signal strength,  $\mu$  = 2.2
- Observed cross-section:

$$\sigma_{t\bar{t}t\bar{t}} = 26 \pm 8 \text{ (stat.)} ^{+15}_{-13} \text{ (syst.) fb} = 26 ^{+17}_{-15} \text{ fb.}$$

• Combination with 2<sup>l</sup>SS/3<sup>l</sup> measurement (<u>arXiv:2007.14858</u>):

$$\sigma_{t\bar{t}t\bar{t}} = 24 \pm 4 \,(\text{stat.}) \,{}^{+5}_{-4} \,(\text{syst.}) \,\text{fb} = 24 \,{}^{+7}_{-6} \,\text{fb}.$$




#### **Observation of** *4t* **production** <u>arXiv:2303.15061</u>

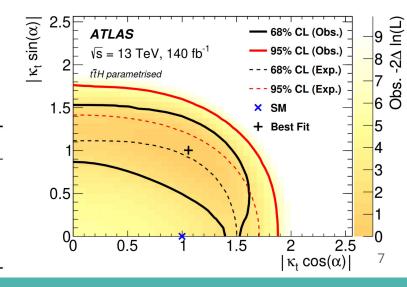


- Refined measurement in 2<sub>l</sub>SS/3<sub>l</sub> channel
- Data-driven background estimations
  - Dedicated CRs for non-prompt/fake leptons
  - Normalisation correction to  $t\bar{t}W$  based on jet multiplicity
- Fully connected graph neural network for S/B discrimination
  - Reconstructed  $j/\ell/E_T^{miss}$  as nodes
  - Angular separations encoded in edges
- Limited by modelling of signal and data-driven estimate of  $t\bar{t}W$  background

$$\mu = 1.89^{+0.37}_{-0.35}(\text{stat}) {}^{+0.62}_{-0.37}(\text{syst}) = 1.89^{+0.73}_{-0.51}.$$
  
$$\sigma_{t\bar{t}t\bar{t}} = 22.7^{+4.7}_{-4.4}(\text{stat}) {}^{+4.6}_{-3.4}(\text{syst}) \text{ fb} = 22.7 {}^{+6.6}_{-5.5} \text{ fb}.$$

#### Observation of 4 tops production!

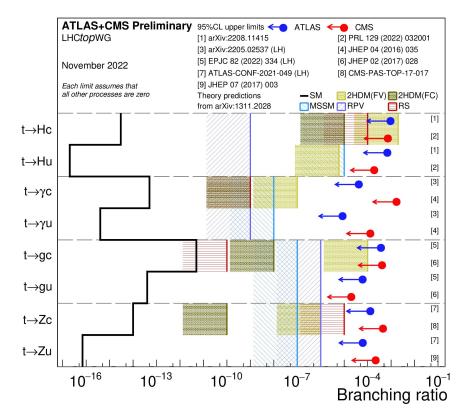



#### **Observation of** *4t* **production** <u>arXiv:2303.15061</u>

- Set limits on very rare (unobserved) 3 tops process ( $\sigma_{3t}^{SM} = 1.67$  fb)
- Constrain the top-Higgs Yukawa coupling
- EFT operator coefficients affecting 4*t* production

$$\sigma_{t\bar{t}t\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i \le j} C_i C_j \sigma_{i,j}^{(2)}$$

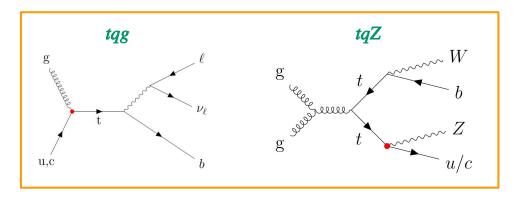
| Operators                     | Expected $C_i/\Lambda^2$ [TeV <sup>-2</sup> ] | Observed $C_i/\Lambda^2$ [TeV <sup>-2</sup> ] |
|-------------------------------|-----------------------------------------------|-----------------------------------------------|
| $O_{QQ}^{1}$                  | [-2.4,3.0]                                    | [-3.5,4.1]                                    |
| $O_{Ot}^{\tilde{1}\tilde{c}}$ | [-2.5,2.0]                                    | [-3.5,3.0]                                    |
| $O_{tt}^{\tilde{1}}$          | [-1.1,1.3]                                    | [-1.7,1.9]                                    |
| $O_{Qt}^8$                    | [-4.2,4.8]                                    | [-6.2,6.9]                                    |

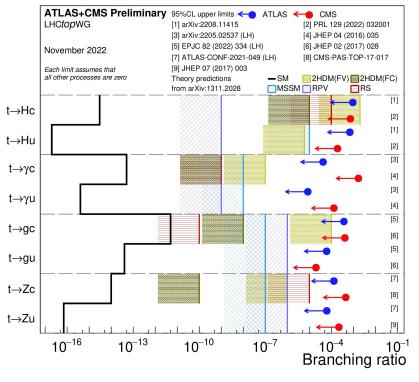

| Processes    | 95% CL cross section interval [fb]                                      |          |  |  |  |
|--------------|-------------------------------------------------------------------------|----------|--|--|--|
|              | $\mu_{t\bar{t}t\bar{t}} = 1 \qquad \qquad \mu_{t\bar{t}t\bar{t}} = 1.9$ |          |  |  |  |
| tīt          | [4.7, 60]                                                               | [0, 41]  |  |  |  |
| $t\bar{t}tW$ | [3.1, 43]                                                               | [0, 30]  |  |  |  |
| tītq         | [0, 144]                                                                | [0, 100] |  |  |  |





**Search for** flavour-changing neutral-current interactions of the top quark tqg - Eur. Phys. J. C 82 (2022) 334 tqy - Phys. Lett B (2022) 137379


> *tqZ* - <u>arXiv:2301.11605</u> *tqH* - <u>arXiv:2208.11415</u>

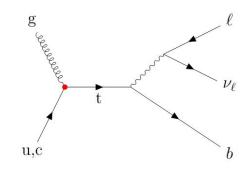



## Why search for FCNCs in top interactions?



- Forbidden at tree level in the Standard Model
- Heavily suppressed at loop level through GIM mechanism
- Wide variety of BSM models predict FCNCs with rates observable at LHC
  - Describe FCNC couplings in terms of EFT framework








- Search for single top production via FCNC
   tqg vertex (q = u/c)
  - Single lepton, 1 *b*-tagged jet and  $E_{miss}^{T}$

FCNC tqg

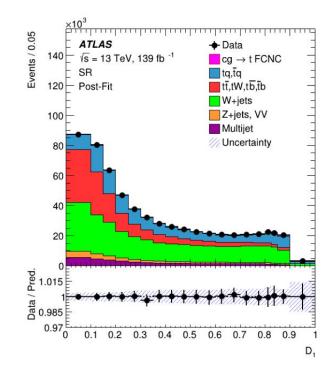
- Data-driven estimate for events with fake leptons from multi-jet background
- Neural networks (NNs) used to discriminate between  $u+g \rightarrow t$ ,  $c+g \rightarrow t$  and background
  - Kinematic input variables including reconstructed top kinematics



## FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)



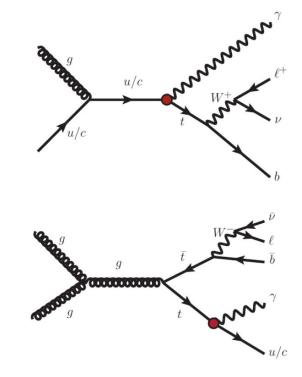
- Profile likelihood fit to NN discriminants in SR
- Dominant uncertainties:


(

- *ugt*: MC stat uncertainty and modelling of W+jets
- *cgt*: parton shower modelling of FCNC *cgt* and SM *tq* processes

5

CL)


$$\begin{array}{c|c}
\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4} \\
\mathcal{B}(t \to c + g) < 3.7 \times 10^{-4} \\
\end{array}$$
(95%)
$$\begin{array}{c}
\mathcal{C}_{uG}^{ut} \\
\overline{\Lambda^2}
\end{array} < 0.057 \, \text{TeV}^{-2} \qquad \frac{|\mathcal{C}_{uG}^{ct}|}{\Lambda^2} < 0.14 \, \text{TeV}^{-2}
\end{array}$$







- Search for FCNC *tqγ* in **top production** and decay
  - Single lepton, high  $p_T \gamma$ ,  $E_{miss}^T$
- CRs for main backgrounds with prompt photons ( $t\bar{t}_{\gamma}$ , W<sub> $\gamma$ </sub>+jets)
- Data-driven corrections to rate of electron/hadron $\rightarrow \gamma$  fakes



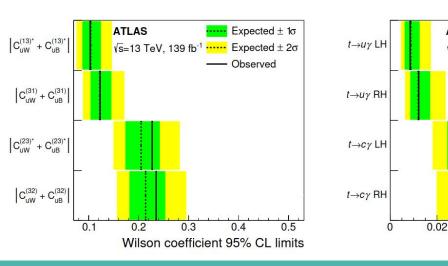
#### FCNC $tq\gamma$ (Phys. Lett B (2022) 137379)

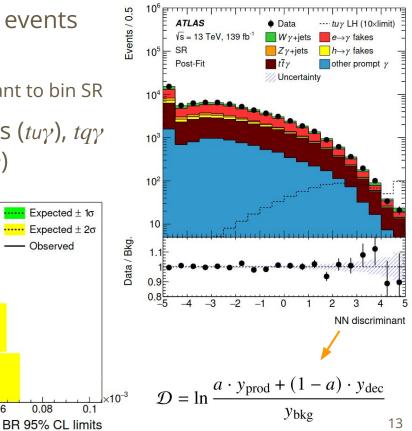


- Multiclass deep neural networks to split events into two signal modes and background
  - Combined output nodes into single discriminant to bin SR 0

ATLAS

√s=13 TeV, 139 fb<sup>-1</sup> .....


0.04


0.06

Observed

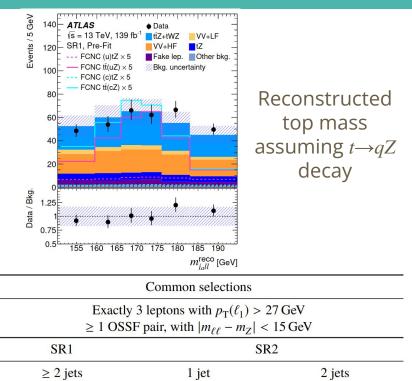
0.08

Dominant uncertainties: limited statistics ( $tu\gamma$ ),  $tq\gamma$ theory cross-section,  $h \rightarrow \gamma$  estimate (*tc* $\gamma$ )








1 b-jet

 $m_{\rm T}(\ell_W, \nu) > 40 \,{\rm GeV}$ 

$$\begin{split} |m_{j_a\ell\ell}^{\text{reco}} - m_t| &> 2\sigma_{t_{\text{FCNC}}} \\ |m_{j_b\ell_W\nu}^{\text{reco}} - m_t| &< 2\sigma_{\overline{l}\ell_W} \end{split}$$

## FCNC *tqZ* (arXiv:2301.11605)

- Search for FCNC *tqZ* in **top production and decay** 
  - Trilepton event selection (*low background channel*)
- Two SRs targeting production and decay processes
  - Split by mass of reconstructed top(s)
- Additional CRs for dominant (diboson,  $t\bar{t}Z$ ) and fake lepton ( $t\bar{t}$ ) backgrounds

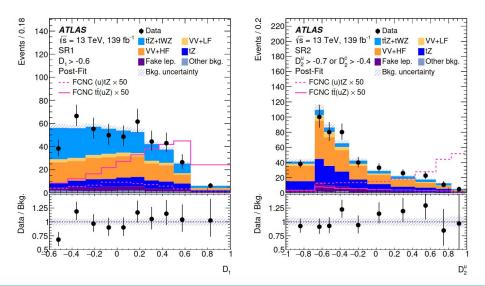


1 b-jet

 $m_{\rm T}(\ell_W, \nu) > 40 \,{\rm GeV}$ 

 $|m_{j_b\ell_W\nu}^{\text{reco}} - m_t| < 2\sigma_{t_{\text{SM}}}$ 

1 b-jet


 $|m_{j_a\ell\ell}^{\rm reco} - m_t| < 2\sigma_{t_{\rm FCNC}}$ 

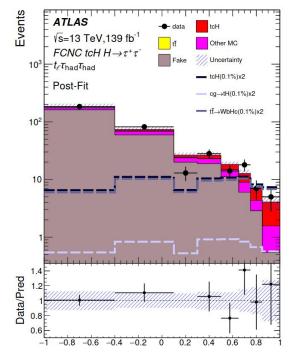
## FCNC *tqZ* (arXiv:2301.11605)



#### • GBDTs used for S/B discrimination

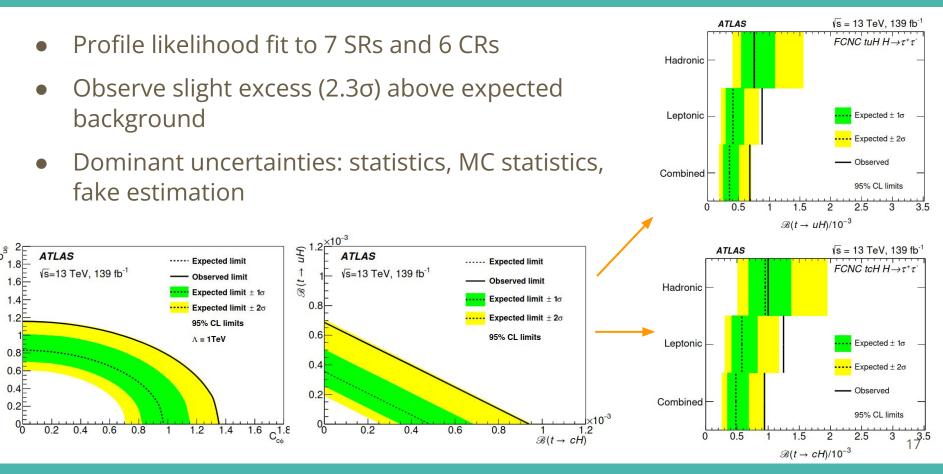
- Reconstructed top kinematics provide key inputs
- Dominant uncertainty: limited statistics




| Observable                                                           | Vertex   | Coupling | Observed             | Expected                           |
|----------------------------------------------------------------------|----------|----------|----------------------|------------------------------------|
|                                                                      | SRs+CRs  |          |                      |                                    |
| $\mathcal{B}(t \to Zq)$                                              | tZu      | LH       | $6.2 \times 10^{-5}$ | $4.9^{+2.1}_{-1.4} \times 10^{-5}$ |
| $\mathcal{B}(t \to Zq)$                                              | tZu      | RH       | $6.6 \times 10^{-5}$ | $5.1^{+2.1}_{-1.4} \times 10^{-5}$ |
| $\mathcal{B}(t \to Zq)$                                              | tZc      | LH       | $13 \times 10^{-5}$  | $11^{+5}_{-3} \times 10^{-5}$      |
| $\mathcal{B}(t \to Zq)$                                              | tZc      | RH       | $12 \times 10^{-5}$  | $10^{+4}_{-3} \times 10^{-5}$      |
| $ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $                            | tZu      | LH       | 0.15                 | $0.13 \substack{+0.03 \\ -0.02}$   |
| $ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $                              | tZu      | RH       | 0.16                 | $0.14 \stackrel{+0.03}{_{-0.02}}$  |
| $ C_{\mu W}^{(23)*} $ and $ C_{\mu B}^{(23)*} $                      | tZc      | LH       | 0.22                 | $0.20 \stackrel{+0.04}{_{-0.03}}$  |
| $ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $                              | tZc      | RH       | 0.21                 | $0.19 \substack{+0.04 \\ -0.03}$   |
|                                                                      | SR1+CRs  |          |                      |                                    |
| $\mathcal{B}(t \to Z)$                                               | .77      | T TT     | 0.7.10-5             | 0 < +3.6 10 <sup>-5</sup>          |
| $\frac{\mathcal{B}(t \to Z)}{\mathcal{B}(t \to Z)} \qquad \qquad Se$ | ensitive | e to sa  | ime Ef               | $-\top$ 0 <sup>-5</sup>            |
| $\mathcal{B}(t \rightarrow 2)$                                       | opera    | ators a  | as tqy               | 0 <sup>-5</sup>                    |
| $\mathcal{B}(t \to Zq)$                                              | tZu      | RH       | $9.0 \times 10^{-3}$ | $6.6^{+2.9}_{-1.8} \times 10^{-5}$ |

## FCNC $tqH(\tau\tau)$ (arXiv:2208.11415)

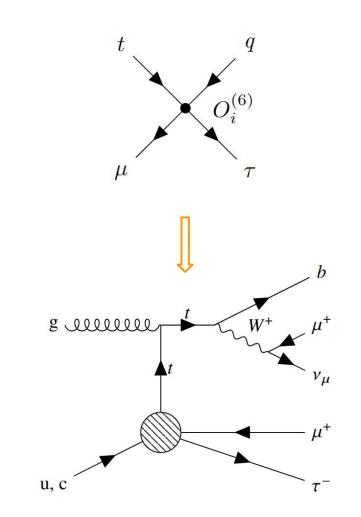



- Search for FCNC *tqH* in **top production and** decay
  - Require  $H \rightarrow \tau \tau$  decay
- Many SRs targeting different top and *τ*-lepton decays channels
- Data-driven background estimates for fake  $\tau_{\rm had}$  and fake/non-prompt light leptons
- BDTs used for S/B discrimination
  - Rely on event kinematics for training (including kinematic reconstruction where possible)

#### BDT discriminant in most sensitive SR



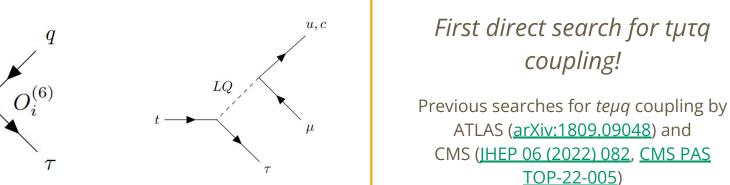
## FCNC $tqH(\tau\tau)$

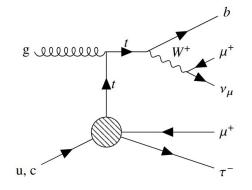





(arXiv:2208.11415)

Search for charged lepton flavour violating interactions of the top quark

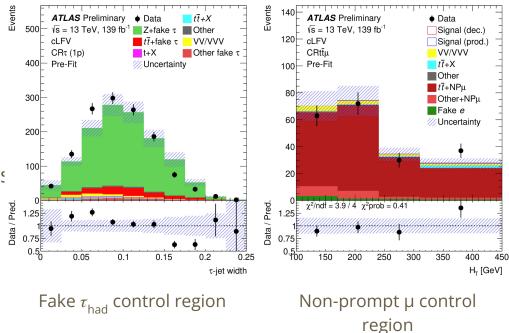

#### ATLAS-CONF-2023-001




- Lepton flavour conservation arises due to an accidental symmetry of the SM
- cLFV features in several BSM models (leptoquarks, SUSY, 2HDM)

μ

- Model-independent search using EFT approach
  - Sensitive to a number of four-fermion EFT operators





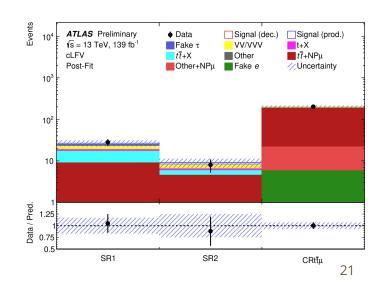





- Signal includes single top production and top quark pair decay
- Trilepton selection including *hadronic taus*
- Data-driven background estimations for fake background processes
  - Scale factors to correct rate of fake  $\tau_{had}$  background
  - Correct normalisation of non-prompt background in fit






#### **Statistically limited!**

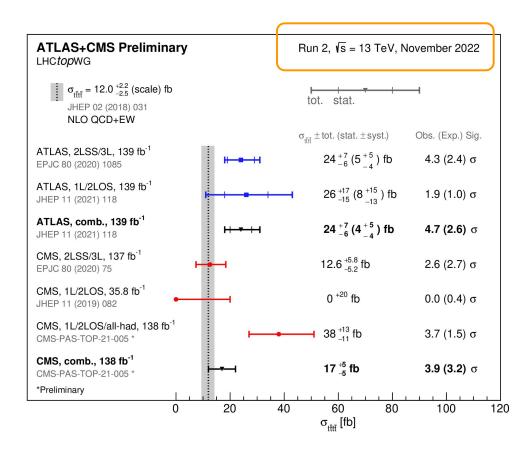
- Profile likelihood fit across two SRs and non-prompt muon CR
- Stringent limits on Wilson coefficients corresponding to 2Q2L operators
  - Improve upon the previous results by up to a factor of 51

|                    | 95%                | CL uppe           | $c/\Lambda^2~[{ m TeV}^{-2}]$ |                   |                      |                      |                      |                      |
|--------------------|--------------------|-------------------|-------------------------------|-------------------|----------------------|----------------------|----------------------|----------------------|
|                    | $c_{lq}^{-(ijk3)}$ | $c_{eq}^{(ijk3)}$ | $c_{lu}^{(ijk3)}$             | $c_{eu}^{(ijk3)}$ | $c_{lequ}^{1(ijk3)}$ | $c_{lequ}^{1(ij3k)}$ | $c_{lequ}^{3(ijk3)}$ | $c_{lequ}^{3(ij3k)}$ |
| Previous (u)       | 12                 | 12                | 12                            | 12                | 26                   | 26                   | 3.4                  | 3.4                  |
| ATLAS expected (u) | 0.47               | 0.44              | 0.43                          | 0.46              | 0.49                 | 0.49                 | 0.11                 | 0.11                 |
| ATLAS observed (u) | 0.49               | 0.47              | 0.46                          | 0.48              | 0.51                 | 0.51                 | 0.11                 | 0.11                 |
| Previous (c)       | 14                 | 14                | 14                            | 14                | 29                   | 29                   | 3.7                  | 3.7                  |
| ATLAS expected (c) | 1.6                | 1.6               | 1.5                           | 1.6               | 1.8                  | 1.8                  | 0.35                 | 0.35                 |
| ATLAS observed (c) | 1.7                | 1.6               | 1.6                           | 1.6               | 1.9                  | 1.9                  | 0.37                 | 0.37                 |

Previous limits from JHEP04 (2019) 014 (reinterpretation of JHEP07 (2018) 176)

|          | Exclusion limit $B(t \rightarrow \mu \tau q)$ |                       |  |  |  |
|----------|-----------------------------------------------|-----------------------|--|--|--|
|          | Stat. only All systemat                       |                       |  |  |  |
| Expected | $7.57 \times 10^{-7}$                         | $9.82 \times 10^{-7}$ |  |  |  |
| Observed | $9.43 \times 10^{-7}$                         | $10.8 \times 10^{-7}$ |  |  |  |

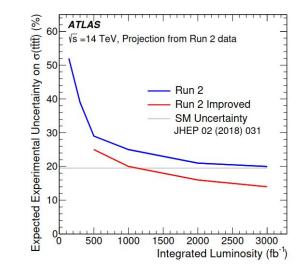



## Conclusions

- Many exciting Run 2 rare top results!
  - First observation of 4*t* production!
  - Several measurements, particularly multilepton, are statistical limited → expect further improvements from Run 3 and HL-LHC
- Diverse FCNC top couplings programme
  - $\circ$  tq $\gamma$ , tqg, tqH, tqZ
  - Most stringent limits on these branching ratios observed by ATLAS to date
- First search for cLFV *tμτq* coupling
  - Complements existing *teµq* searches
- <u>Full programme</u> of ATLAS top physics results



#### *t* production measurements at the LHC






#### HL-LHC 4*t* prospects

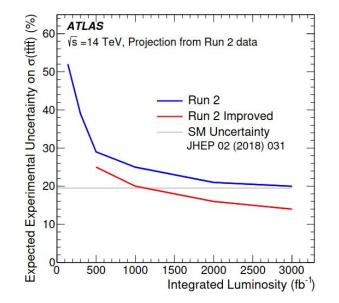
(ATL-PHYS-PUB-2022-004)





#### Study into HL-LHC sensitivity - ATL-PHYS-PUB-2022-004

Consider conservative/optimistic systematic reductions with 3000 ifb at 14 TeV in 2<sub>ℓ</sub>SS/3<sub>ℓ</sub> channel


Expected significance (wrt B-only hypothesis): 4.2-6.4o

Expected uncertainty on cross section: 14%-20%

#### HL-LHC 4*t* prospects

(ATL-PHYS-PUB-2022-004)





| Integrated luminosity (fb <sup>-1</sup> ) | "Run 2" | "Run 2 Improved" |
|-------------------------------------------|---------|------------------|
| 500                                       | 3.5     | 4.1              |
| 1000                                      | 3.9     | 4.9              |
| 2000                                      | 4.0     | 5.9              |
| 3000                                      | 4.2     | 6.4              |

| Uncertainty source                                 | Treatment in the "Run 2 Improved" model |
|----------------------------------------------------|-----------------------------------------|
| Signal modelling                                   |                                         |
| tītī cross section                                 | Half of Run 2                           |
| <i>tītī</i> modelling                              | Half of Run 2                           |
| Background modelling                               |                                         |
| ttW+jets modelling                                 |                                         |
| Renormalisation and factorisation scales           | Half of Run 2                           |
| Generator                                          | Half of Run 2                           |
| Jets multiplicity modelling                        | Scaled by Run 2 pulls                   |
| Additional heavy flavour jets                      | Scaled by luminosity                    |
| tīt modelling                                      |                                         |
| Cross section                                      | Half of Run 2                           |
| Additional heavy flavour jets                      | Scaled by luminosity                    |
| Non-prompt leptons modelling                       | Scaled by luminosity                    |
| $t\bar{t}H$ +jets and $t\bar{t}Z$ +jets modelling  |                                         |
| Cross section                                      | Half of Run 2                           |
| Renormalisation and factorisation scales           | Half of Run 2                           |
| Generator                                          | Half of Run 2                           |
| PDF                                                | Half of Run 2                           |
| Additional heavy flavour jets                      | Scaled by luminosity                    |
| Other background modelling                         |                                         |
| Cross section                                      | Half of Run 2                           |
| Additional heavy flavour jets                      | Scaled by luminosity                    |
| Charge misassignment                               | Same as Run 2                           |
| Template fit shape uncertainties                   |                                         |
| Mat. Conv., $\gamma^*$ , and HF non-prompt leptons | Scaled by luminosity                    |
| Other fake leptons                                 | Half of Run 2                           |
| Additional heavy flavour jets                      | Half of Run 2                           |
| Instrumental                                       |                                         |
| Jet uncertainties                                  | Same as Run 2                           |
| Jet flavour tagging (light-flavour jets)           | Half of Run 2                           |
| Luminosity                                         | Same as Run 2                           |
| Jet flavour tagging (b-jets)                       | Half of Run 2                           |
| Jet flavour tagging (c-jets)                       | Half of Run 2                           |
| Other experimental uncertainties                   | Same as Run 2                           |

#### Evidence for 4t production

#### (JHEP11(2021)118)



Pseudo-continuous *b*-tagging used to separate the different flavour components of the associated jets in the  $\overline{n}$ +jets background.

| Name             | $N_b^{60\%}$ | $N_b^{70\%}$ | $N_b^{85\%}$ |
|------------------|--------------|--------------|--------------|
| 2b               | -            | = 2          |              |
| $3\mathrm{bL}$   | $\leq 2$     | = 3          |              |
| $3\mathrm{bH}$   | =3           | = 3          | = 3          |
| 3bV              | = 3          | = 3          | $\geq 4$     |
| $\geq 4b$ (2LOS) | -            | $\geq 4$     | -            |
| 4b (1L)          | -            | =4           | -            |
| $\geq 5b$ (1L)   | -            | $\geq 5$     | -            |

tt+b

tī+≥3b

tt+B

non-tī

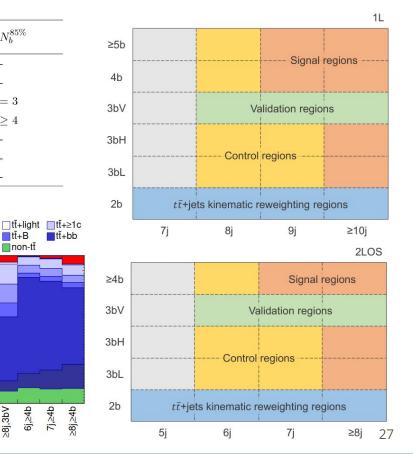
tt+bb

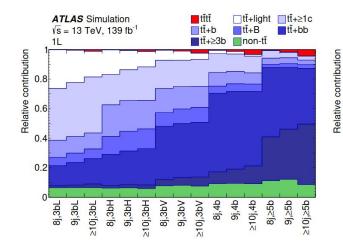
ATLAS Simulation

2LOS

0.8

0.6

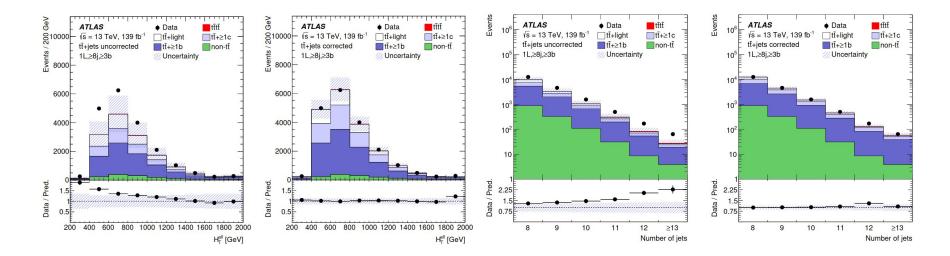

0.4


0.2

6j,3bL

7j,3bL ≥8j,3bL 6j,3bH 7j,3bH ≥8j,3bH 6j,3bV 7j,3bV 28j,3bV 6j,≥4b 7j,≥4b ≥8j,≥4b

√s = 13 TeV, 139 fb<sup>-1</sup>






### **Evidence for 4***t* **production**

#### (JHEP11(2021)118)





Effect of data-driven corrections to n+HF background:

- Separate scaling for each flavour component
- Sequential kinematic reweighting to correct modelling (incl. jet multiplicity, total event energy)

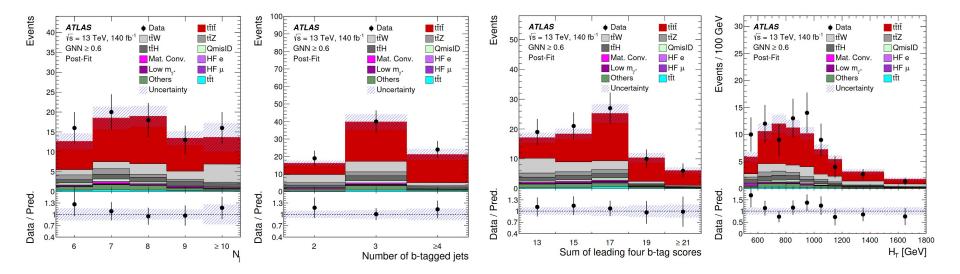
#### **Observation of** *4t* **production** <u>arXiv:2303.15061</u>



| Channel                | N.                                                                             | N,                                                                                                                                                                                                      | Other                                                                                                                                                                                                                                                     | Fitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Channel                | l Ivj                                                                          | Nb                                                                                                                                                                                                      | selection                                                                                                                                                                                                                                                 | variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| SS an or all           | 1 < N = 6                                                                      | 1                                                                                                                                                                                                       | $\ell_0$ or $\ell_1$ is from virtual photon ( $\gamma^*$ ) decay                                                                                                                                                                                          | counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $33, ee or e\mu$       | $4 \leq N_j < 0$                                                               | 21                                                                                                                                                                                                      | $\ell_0$ and $\ell_1$ are not from photon conversion                                                                                                                                                                                                      | counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| SS, ee or $e\mu$       | $4 \le N_{\rm j} < 6$                                                          | ≥ 1                                                                                                                                                                                                     | $\ell_0$ or $\ell_1$ is from photon conversion                                                                                                                                                                                                            | counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                        | and a                                                                          |                                                                                                                                                                                                         | $100 < H_{\rm T} < 300 {\rm GeV}$                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ann ar mun             | > 1                                                                            | - 1                                                                                                                                                                                                     | $E_{\rm T}^{\rm miss} > 50 {\rm ~GeV}$                                                                                                                                                                                                                    | el2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| εμμ οι μμμ             | 2 1                                                                            | - 1                                                                                                                                                                                                     | total charge is $\pm 1$                                                                                                                                                                                                                                   | $p_{\mathrm{T}}^{\ell_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0                      |                                                                                |                                                                                                                                                                                                         | $100 < H_{\rm T} < 275 {\rm ~GeV}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 222 27 224             | > 1                                                                            | - 1                                                                                                                                                                                                     | $E_{\rm T}^{\rm miss} > 35 {\rm ~GeV}$                                                                                                                                                                                                                    | l <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| eee of eeµ             | 21                                                                             | - 1                                                                                                                                                                                                     | total charge is $\pm 1$                                                                                                                                                                                                                                   | $p_{\mathrm{T}}^{\ell_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                        |                                                                                |                                                                                                                                                                                                         | $ \eta(e)  < 1.5$                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                |                                                                                                                                                                                                         | when $N_b = 2$ : $H_T < 500$ GeV or $N_i < 6$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| SS, $e\mu$ or $\mu\mu$ | ≥ 4                                                                            | ≥ 2                                                                                                                                                                                                     | when $N_b \ge 3$ : $H_T < 500 \text{ GeV}$                                                                                                                                                                                                                | Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                |                                                                                                                                                                                                         | total charge $> 0$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                |                                                                                                                                                                                                         | $ \eta(e)  < 1.5$                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                |                                                                                                                                                                                                         | when $N_b = 2$ : $H_T < 500$ GeV or $N_j < 6$                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| SS, $e\mu$ or $\mu\mu$ | ≥ 4                                                                            | ≥ 2                                                                                                                                                                                                     | when $N_b \ge 3$ : $H_T < 500 \text{ GeV}$                                                                                                                                                                                                                | Nj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                |                                                                                                                                                                                                         | total charge $< 0$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                |                                                                                                                                                                                                         | $\ell_0$ and $\ell_1$ are not from photon conversion                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2LSS+3L                | ≥ 4                                                                            | = 1                                                                                                                                                                                                     | $H_{\rm T} > 500 { m ~GeV}$                                                                                                                                                                                                                               | Nj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                |                                                                                                                                                                                                         | total charge $> 0$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        |                                                                                |                                                                                                                                                                                                         | $\ell_0$ and $\ell_1$ are not from photon conversion                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2LSS+3L                | ≥ 4                                                                            | = 1                                                                                                                                                                                                     | $H_{\rm T} > 500 { m ~GeV}$                                                                                                                                                                                                                               | Nj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                        |                                                                                |                                                                                                                                                                                                         | total charge $< 0$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 2LSS+3L                | ≥ 6                                                                            | ≥ 2                                                                                                                                                                                                     | $H_{\rm T} > 500$                                                                                                                                                                                                                                         | GNN scor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                        | eμμ or μμμ<br>eee or eeμ<br>SS, eμ or μμ<br>SS, eμ or μμ<br>2LSS+3L<br>2LSS+3L | SS, ee or $e\mu$ $4 \le N_j < 6$ SS, ee or $e\mu$ $4 \le N_j < 6$ $e\mu\mu$ or $\mu\mu\mu$ $\ge 1$ eee or $ee\mu$ $\ge 1$ SS, $e\mu$ or $\mu\mu$ $\ge 4$ SS, $e\mu$ or $\mu\mu$ $\ge 4$ 2LSS+3L $\ge 4$ | SS, ee or $e\mu$ $4 \le N_j < 6$ $\ge 1$ SS, ee or $e\mu$ $4 \le N_j < 6$ $\ge 1$ $e\mu\mu$ or $\mu\mu\mu$ $\ge 1$ $= 1$ eee or $ee\mu$ $\ge 1$ $= 1$ SS, $e\mu$ or $\mu\mu$ $\ge 4$ $\ge 2$ SS, $e\mu$ or $\mu\mu$ $\ge 4$ $\ge 2$ 2LSS+3L $\ge 4$ $= 1$ | $ \begin{array}{ c c c c c } \hline Channel & N_j & N_b & selection \\ \hline SS, ee or e\mu & 4 \leq N_j < 6 & \geq 1 & \ell_0 \mbox{ or } \ell_1 \mbox{ is from virtual photon } (\gamma^*) \mbox{ decay} \\ \ell_0 \mbox{ and } \ell_1 \mbox{ are not from photon conversion} \\ \hline SS, ee or e\mu & 4 \leq N_j < 6 & \geq 1 & \ell_0 \mbox{ or } \ell_1 \mbox{ is from photon conversion} \\ \hline SS, ee or e\mu & 4 \leq N_j < 6 & \geq 1 & \ell_0 \mbox{ or } \ell_1 \mbox{ is from photon conversion} \\ \hline e\mu\mu \mbox{ or } \mu\mu\mu & \geq 1 & = 1 & 1 & 100 < H_T < 300 \mbox{ GeV} \\ eee \mbox{ or } ee\mu & \geq 1 & = 1 & 100 < H_T < 275 \mbox{ GeV} \\ \hline eee \mbox{ or } ee\mu & \geq 1 & = 1 & 100 < H_T < 275 \mbox{ GeV} \\ \hline eee \mbox{ or } ee\mu & \geq 1 & = 1 & 100 < H_T < 275 \mbox{ GeV} \\ \hline eee \mbox{ or } ee\mu & \geq 1 & = 1 & 100 < H_T < 275 \mbox{ GeV} \\ \hline SS, e\mu \mbox{ or } \mu\mu & \geq 4 & \geq 2 & \text{when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \\ \hline SS, e\mu \mbox{ or } \mu\mu & \geq 4 & \geq 2 & \text{when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \\ \hline SS, e\mu \mbox{ or } \mu\mu & \geq 4 & \geq 2 & \text{when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \\ \hline SS, e\mu \mbox{ or } \mu\mu & \geq 4 & \geq 2 & \text{when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \\ \hline SS, e\mu \mbox{ or } \mu\mu & \geq 4 & \geq 2 & \mbox{ or } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T > 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 3: \mbox{ H}_T < 500 \mbox{ GeV} \mbox{ or } N_j < 6 \ \mbox{ when } N_b \geq 4 \ \mbox{ H}_T > 500 \mbox{ GeV} \mbox{ or } N_j < 6 \  $ |  |



| Fake/non-prompt background | NF <sub>Mat. Conv.</sub> | $NF_{Low \ m_{\gamma^*}}$ | NF <sub>HF</sub> e     | $\rm NF_{\rm HF}\mu$   |
|----------------------------|--------------------------|---------------------------|------------------------|------------------------|
| Value                      | $1.80^{+0.47}_{-0.41}$   | $1.08^{+0.37}_{-0.31}$    | $0.66^{+0.75}_{-0.46}$ | $1.27^{+0.53}_{-0.46}$ |


$$NF_{t\bar{t}W(j)} = NF_{t\bar{t}W^+(4jet)} \times \Pi_{j'=4}^{j'=j-1} \left[ a_0 + \frac{a_1}{1 + (j'-4)} \right] + NF_{t\bar{t}W^-(4jet)} \times \Pi_{j'=4}^{j'=j-1} \left[ a_0 + \frac{a_1}{1 + (j'-4)} \right]$$

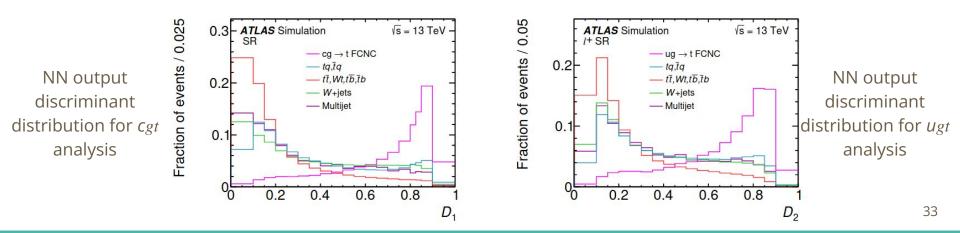
| <i>ttW</i> background | $a_0$           | $a_1$                  | $NF_{t\bar{t}W^+(4jet)}$ | $NF_{t\bar{t}W^-(4jet)}$ |
|-----------------------|-----------------|------------------------|--------------------------|--------------------------|
| Value                 | $0.51 \pm 0.10$ | $0.22^{+0.25}_{-0.22}$ | $1.27_{-0.22}^{+0.25}$   | $1.11_{-0.28}^{+0.31}$   |

#### **Observation of** *4t* **production** <u>arXiv:2303.15061</u>



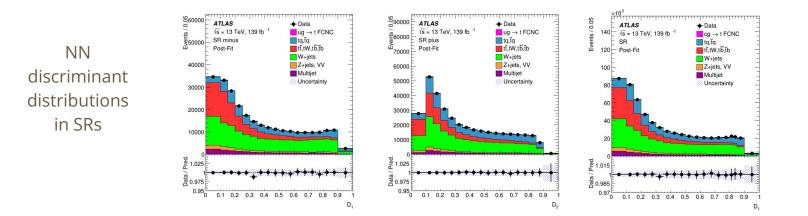
• Signal+background model in high GNN score region shows good agreement with observed data






| Observable                                     |     | Common r                     | equirem                      | ents                      |                                 |                   |
|------------------------------------------------|-----|------------------------------|------------------------------|---------------------------|---------------------------------|-------------------|
| $n_{\text{Tight}}(e) + n_{\text{Medium}}(\mu)$ |     | =                            | = 1                          |                           |                                 |                   |
| $n_{\text{Loose}}(e) + n_{\text{Loose}}(\mu)$  |     |                              | = 1                          |                           |                                 |                   |
| $E_{\mathrm{T}}^{\mathrm{miss}}$               |     | > 30                         | 0 GeV                        |                           | ATLAS                           | √s=13 TeV, 139    |
| $m_{\mathrm{T}}\left(W ight)$                  |     | > 50                         | 0 GeV                        |                           | SR                              |                   |
| n(j)                                           |     |                              | <u>≥</u> 1                   |                           | И                               | /+jets 36.8%      |
| $p_{\mathrm{T}}\left(\ell ight)$               |     | $> 50 \mathrm{GeV} \cdot (1$ | $-\frac{\pi- \Delta q}{\pi}$ | $\binom{b(j_1,\ell)}{-1}$ | Z+jets,VV 4.8%<br>Multijet 7.6% |                   |
|                                                |     | Analysi                      | is region                    | s                         |                                 |                   |
|                                                | SR  | W+jets VR                    | tī VR                        | tq VR                     |                                 |                   |
| $n( \eta(j) <2.5)$                             | = 1 | = 1                          | = 2                          | = 1                       | tq,īq 22.2%                     | tī,Wt,tb,īb 28.7% |
| n(b)                                           | = 1 | = 1                          | = 2                          | = 1                       | 19,19 22.270                    |                   |
| $\epsilon_b$                                   | 30% | 60% (veto 30%)               | 30%                          | 30%                       |                                 |                   |
| $n( \eta(j) >2.5)$                             | ≥ 0 | $\geq 0$                     | ≥ 0                          | = 1                       |                                 |                   |
| $D_{1(2)}$                                     | -   | $0.3 < D_{1(2)} < 0.6$       | -                            | $0.2 < D_{1(2)} < 0.4$    |                                 |                   |

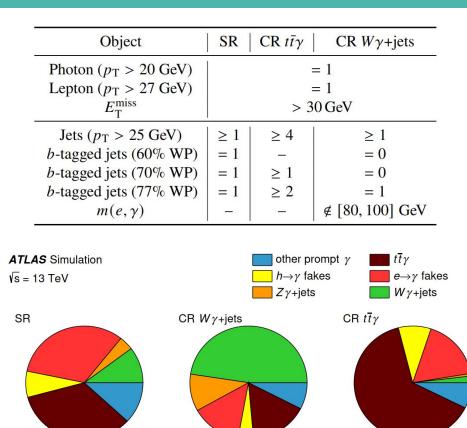
## FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)

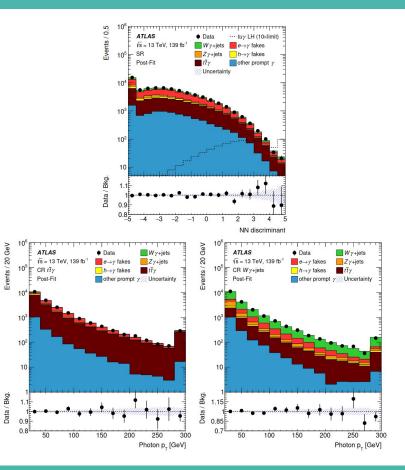



- Two NNs to discriminate S/B
  - $D_1$  trained only on  $c+g \rightarrow t$  (incl.  $\overline{c}+g \rightarrow \overline{t}$ ) optimised for sea quark production
  - $D_2$  trained only on  $u+g \rightarrow t$  (excl.  $\overline{u}+g \rightarrow \overline{t}$ ) optimised for valence quark production
  - Multijet background excluded from NN training
- Use  $D_1$  in *cgt* analysis and  $\ell^-$  channel of *ugt* analysis
- Use  $D_2$  in  $\ell^+$  channel of ugt analysis



## FCNC *tqg* (Eur. Phys. J. C 82 (2022) 334)

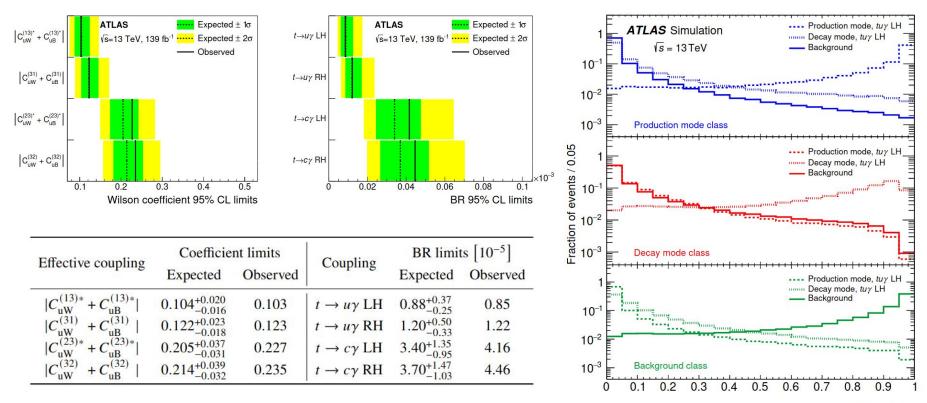



| Scenario | Description                             | $\mathcal{B}_{95}^{\exp}(t \to u + g)$ | $\mathcal{B}_{95}^{\exp}(t \to c + g)$ |
|----------|-----------------------------------------|----------------------------------------|----------------------------------------|
| (1)      | Data statistical only                   | $1.1 \times 10^{-5}$                   | $2.4 \times 10^{-5}$                   |
| (2)      | Experimental uncertainties also         | $3.1 \times 10^{-5}$                   | $12 \times 10^{-5}$                    |
| (3)      | All uncertainties except MC statistical | $3.9 \times 10^{-5}$                   | $18 \times 10^{-5}$                    |
| (4)      | All uncertainties                       | $4.9 \times 10^{-5}$                   | $20 \times 10^{-5}$                    |










#### FCNC $tq\gamma$

#### (Phys. Lett B (2022) 137379)





NN output 36

## FCNC *tqZ* (arXiv:2301.11605)



| Common selections                                                                                                                |                                                              |                                                                                                                                                                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Exactly 3 leptons with $p_T(\ell_1) > 27 \text{ GeV}$<br>$\geq 1 \text{ OSSF pair, with }  m_{\ell\ell} - m_Z  < 15 \text{ GeV}$ |                                                              |                                                                                                                                                                     |  |  |  |
| SR1                                                                                                                              | SR1 SR2                                                      |                                                                                                                                                                     |  |  |  |
| $\geq 2$ jets                                                                                                                    | 1 jet                                                        | 2 jets                                                                                                                                                              |  |  |  |
| 1 <i>b</i> -jet                                                                                                                  | 1 <i>b</i> -jet                                              | 1 <i>b</i> -jet                                                                                                                                                     |  |  |  |
| -                                                                                                                                | $m_{\mathrm{T}}(\ell_W, \nu) > 40 \mathrm{GeV}$              | $m_{\mathrm{T}}(\ell_W, \nu) > 40 \mathrm{GeV}$                                                                                                                     |  |  |  |
| $ m_{j_a\ell\ell}^{\text{reco}} - m_t  < 2\sigma_{t_{\text{FCNC}}}$                                                              | $ m_{j_b\ell_W\nu}^{\rm reco} - m_t  < 2\sigma_{t_{\rm SM}}$ | $\begin{split}  m_{j_a\ell\ell}^{\text{reco}} - m_t  &> 2\sigma_{t_{\text{FCNC}}} \\  m_{j_b\ell_W\nu}^{\text{reco}} - m_t  &< 2\sigma_{t_{\text{SM}}} \end{split}$ |  |  |  |

| Common selections         |                                                           |                                                               |                                                                      |  |  |  |  |
|---------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
|                           | Exactly 3 leptons with $p_{\rm T}(\ell_1) > 27 {\rm GeV}$ |                                                               |                                                                      |  |  |  |  |
| tī CR                     | $t\bar{t}Z \operatorname{CR}$                             | Side-band CR1                                                 | Side-band CR2                                                        |  |  |  |  |
| $\geq$ 1 OS pair, no OSSF | ≥ 1 OSSF pair                                             | ≥ 1 OSSF pair                                                 | ≥ 1 OSSF pair                                                        |  |  |  |  |
|                           | with $ m_{\ell\ell} - m_Z  < 15 \text{GeV}$               | with $ m_{\ell\ell} - m_Z  < 15 \text{GeV}$                   | with $ m_{\ell\ell} - m_Z  < 15 \text{GeV}$                          |  |  |  |  |
| _                         | _                                                         | <u> </u>                                                      | $m_{\mathrm{T}}(\ell_W, \nu) > 40 \mathrm{GeV}$                      |  |  |  |  |
| $\geq 1$ jet              | $\geq$ 4 jets                                             | $\geq 2$ jets                                                 | 1 jet                                                                |  |  |  |  |
| 1 <i>b</i> -jet           | 2 <i>b</i> -jets                                          | 1 <i>b</i> -jet                                               | 1 <i>b</i> -jet                                                      |  |  |  |  |
| -                         | _                                                         | $ m_{j_a\ell\ell}^{\rm reco} - m_t  > 2\sigma_{t_{\rm FCNC}}$ | _                                                                    |  |  |  |  |
| -                         | -                                                         | $ m_{j_b\ell_W\nu}^{\rm reco} - m_t  > 2\sigma_{t_{\rm SM}}$  | $ m_{j_b \ell_W \nu}^{\text{reco}} - m_t  > 2\sigma_{t_{\text{SM}}}$ |  |  |  |  |

## **FCNC** $tqH(\tau\tau)$ (arXiv:2208.11415)



| Requirement           |                                                                                                         | Hadronic channel |                                            |                                                             |  |
|-----------------------|---------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|-------------------------------------------------------------|--|
| Requirement           | $t_h \tau_{\rm lep} \tau_{\rm had}$ $t_\ell \tau_{\rm had} \tau_{\rm had}$ $t_\ell \tau_{\rm had}$      |                  | $t_\ell 	au_{ m had}$                      | $t_h \tau_{\rm had} \tau_{\rm had}$                         |  |
| Trigger               | single-lepton trigger                                                                                   |                  | di- $\tau$ trigger                         |                                                             |  |
| Leptons               | =1 isolated e or $\mu$                                                                                  |                  | =0 isolated $e$ or $\mu$                   |                                                             |  |
| $	au_{ m had}$        | $=1 \tau_{had}$ $=2 \tau_{had}$ $=1 \tau_{had}$                                                         |                  | $=1 \tau_{had}$                            | $=2 \tau_{had}$                                             |  |
| Electric charge $(Q)$ | $Q_\ell \times Q_{\tau_{\text{had}1}} = -1$ $Q_{\tau_{\text{had}1}} \times Q_{\tau_{\text{had}2}} = -1$ |                  | $Q_\ell \times Q_{\tau_{\text{had}1}} = 1$ | $Q_{\tau_{\text{had}1}} \times Q_{\tau_{\text{had}2}} = -1$ |  |
| Jets                  | $\geq 3$ jets $\geq 1$ jets $\geq 2$ jets                                                               |                  |                                            | ≥3 jets                                                     |  |
| <i>b</i> -tagging     | =1 b-jets                                                                                               |                  |                                            | =1 b-jets                                                   |  |

|        | Regions                                  | <i>b</i> -jets | Light-flavour jets | Leptons | Hadronic $\tau$ decays | Charge                                    |
|--------|------------------------------------------|----------------|--------------------|---------|------------------------|-------------------------------------------|
|        | $t_{\ell} \tau_{\rm had} \tau_{\rm had}$ | 1              | ≥ 0                | 1       | 2                      | $\tau_{\rm had} \tau_{\rm had}  {\rm OS}$ |
| -      | tℓ Thad-1j                               | 1              | 1                  | 1       | 1                      | $t_{\ell} \tau_{\rm had} SS$              |
|        | tℓ Thad-2j                               | 1              | 2                  | 1       | 1                      | $t_{\ell} \tau_{had} SS$                  |
| SR     | $t_h \tau_{\rm lep} \tau_{\rm had} - 2j$ | 1              | 2                  | 1       | 1                      | $\tau_{\rm lep} \tau_{\rm had}  {\rm OS}$ |
|        | $t_h \tau_{\rm lep} \tau_{\rm had}$ -3j  | 1              | ≥ 3                | 1       | 1                      | $\tau_{\rm lep} \tau_{\rm had}  {\rm OS}$ |
|        | $t_h \tau_{had} \tau_{had} - 2j$         | 1              | 2                  | 0       | 2                      | $\tau_{had} \tau_{had} OS$                |
|        | $t_h \tau_{had} \tau_{had} - 3j$         | 1              | ≥ 3                | 0       | 2                      | $\tau_{had} \tau_{had} OS$                |
| VR —   | $t_{\ell} \tau_{had} \tau_{had}$ -SS     | 1              | ≥ 0                | 1       | 2                      | $\tau_{\rm had} \tau_{\rm had}  {\rm SS}$ |
|        | $t_h \tau_{had} \tau_{had}$ -3j SS       | 1              | ≥ 3                | 0       | 2                      | $	au_{had}	au_{had}$ SS                   |
|        | $t_{\ell}t_{\ell}1b\tau_{had}$           | 1              | ≥ 0                | 2       | 1                      | tete OS                                   |
|        | $t_\ell t_\ell 2b \tau_{had}$            | 2              | ≥ 0                | 2       | 1                      | tete OS                                   |
| CRtt - | $t_{\ell}t_h 2b\tau_{had}$ -2jSS         | 2              | 2                  | 1       | 1                      | $t_{\ell} \tau_{\rm had} SS$              |
|        | $t_{\ell}t_h 2b\tau_{had}$ -2jOS         | 2              | 2                  | 1       | 1                      | $t_{\ell} \tau_{\rm had}  {\rm OS}$       |
|        | $t_{\ell}t_h 2b\tau_{had}$ -3jSS         | 2              | ≥ 3                | 1       | 1                      | $t_{\ell} \tau_{\rm had} SS$              |
|        | $t_{\ell}t_h 2b\tau_{had}$ -3jOS         | 2              | ≥ 3                | 1       | 1                      | $t_{\ell} \tau_{\rm had}  {\rm OS}$       |



|                                          | $t \rightarrow cH$                                                                                                                                          |              |                                                    | $t \rightarrow uH$                                                               |              |                                                                                                                               |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|----------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
| Signal Region                            | 95% CL upper limit [10 <sup>-3</sup> ]                                                                                                                      | Significance | $\mathcal{B}[10^{-3}]$                             | 95% CL upper limit [10 <sup>-3</sup> ]                                           | Significance | $\mathcal{B}[10^{-3}]$                                                                                                        |
|                                          | Observed (Expect                                                                                                                                            | ted)         |                                                    | Observed (Expect                                                                 | ted)         |                                                                                                                               |
| $t_h \tau_{had} \tau_{had} - 2j$         | $1.80(2.72^{+1.18}_{-0.76})$                                                                                                                                | -0.96 (0.78) | $-1.03^{+1.03}_{-1.03}$                            | $1.07(1.60^{+0.71}_{-0.45})$                                                     | -0.90(1.31)  | $-0.55^{+0.58}_{-0.58}$                                                                                                       |
| $t_h \tau_{had} \tau_{had} - 3j$         | $1.80 (2.72^{+1.18}_{-0.76}) \\ 1.14 (1.02^{+0.45}_{-0.29})$                                                                                                | 0.34(1.87)   | $0.16_{-0.47}^{+0.47}$                             |                                                                                  | 0.36(2.25)   | $-0.55^{+0.58}_{-0.58}\\0.14^{+0.40}_{-0.40}$                                                                                 |
| Hadronic combination                     | $1.00(0.95^{+0.42}_{-0.27})$                                                                                                                                | 0.26(1.99)   | $0.11_{-0.43}^{+0.43}$                             | $0.76(0.76^{+0.33}_{-0.21})$                                                     | 0.12(2.52)   | $0.04^{+0.34}_{-0.34}$                                                                                                        |
| $t_{\ell} \tau_{\rm had}$ -2j            | $\begin{array}{r} 4.77  (4.23^{+1.72}_{-1.18}) \\ 3.80  (3.56^{+1.51}_{-0.99}) \\ 4.71  (5.71^{+2.68}_{-1.60}) \\ 2.71  (2.71^{+1.25}_{-9.76}) \end{array}$ | 0.41 (0.47)  | $0.85^{+2.06}_{-2.06}$<br>$0.36^{+1.70}_{-1.70}$   | $3.84(3.48^{+1.42}_{-0.97})$                                                     | 0.36(0.58)   | $0.61^{+1.68}_{-1.68}$<br>$0.29^{+1.33}_{-1.22}$                                                                              |
| $t_{\ell} \tau_{had}$ -1j                | $3.80(3.56^{+1.51}_{-0.99})$                                                                                                                                | 0.22 (0.58)  | $0.36^{+1.70}_{-1.70}$                             | 2 00 (2 70+1.1/)                                                                 | 0.22(0.73)   | $0.29^{+1.33}_{-1.33}$                                                                                                        |
| $t_h \tau_{\rm lep} \tau_{\rm had} - 2j$ | $4.71(5.71^{+2.68}_{-1.60})$                                                                                                                                | -0.52 (0.38) | $-1.36^{+2.56}_{-2.56}$<br>$-0.03^{+1.26}_{-1.26}$ | $2.98(2.78_{-0.78})$ $2.50(2.97_{-0.83}^{+1.25})$                                | -0.47(0.70)  | $-0.66^{+1.38}_{-1.38}$                                                                                                       |
| $t_h \tau_{\rm lep} \tau_{\rm had}$ -3j  | $2.71(2.71^{+1.25}_{-0.76})$                                                                                                                                | -0.03 (0.77) | $-0.03^{+1.26}_{-1.26}$                            | $2.02(2.03^{+0.86}_{-0.57})$                                                     | -0.05 (0.99) | $-0.03^{+0.98}_{-0.98}$                                                                                                       |
| $t_{\ell} \tau_{\rm had} \tau_{\rm had}$ | $1.35(0.61^{+0.27}_{-0.17})$                                                                                                                                | 2.64 (3.31)  | $-0.03^{-1.26}_{-1.26}$<br>$0.74^{+0.33}_{-0.33}$  | $2.02 (2.03 \substack{+0.86 \\ -0.57}) \\ 0.97 (0.44 \substack{+0.19 \\ -0.12})$ | 2.64 (4.38)  | $\begin{array}{c} 0.29^{+1.33}_{-1.33} \\ -0.66^{+1.38}_{-1.38} \\ -0.03^{+0.98}_{-0.98} \\ 0.53^{+0.24}_{-0.24} \end{array}$ |
| Leptonic combination                     | $1.25(0.58^{+0.25}_{-0.16})$                                                                                                                                | 2.61 (3.46)  | $0.69^{+0.31}_{-0.31}$                             | $0.88(0.41^{+0.18}_{-0.11})$                                                     | 2.60 (4.62)  | $0.49^{+0.22}_{-0.22}$                                                                                                        |
| Combination                              | $0.94(0.48^{+0.20}_{-0.14})$                                                                                                                                | 2.34 (4.02)  | $0.51^{+0.24}_{-0.24}$                             | $0.69(0.35^{+0.15}_{-0.10})$                                                     | 2.31 (5.18)  | $0.37^{+0.18}_{-0.18}$                                                                                                        |



| Preselection:                       |                                                              |
|-------------------------------------|--------------------------------------------------------------|
| Number of leptons                   | $N_{\ell} = 3, \ p_{\rm T} > 10 \text{ GeV}, \  \eta  < 2.5$ |
| Leading muon / electron $p_{\rm T}$ | $p_{\rm T}$ > 27 GeV                                         |
| Trigger matching                    | $\geq$ 1 trigger-matched muon / electron                     |
| Sum of lepton charges               | $\sum q_i = \pm 1$                                           |

|                             | SR1                        | SR2      | CRτ      | <b>CR</b> <i>tt µ</i>      |
|-----------------------------|----------------------------|----------|----------|----------------------------|
| Lepton flavour              | $2\mu 1\tau_{\rm had-vis}$ |          |          | $2\mu 1e \ (\ell_3 = \mu)$ |
| $N_{ m jets}$               | ≥ 2                        | 1        | ≥ 2      | ≥ 2                        |
| $N_{b-tags}$                | 1                          | 1        | 1        | $\leq 2$                   |
| Muon $p_T$ cut              | > 15 GeV                   | > 15 GeV | > 15 GeV | > 10 GeV                   |
| Lowest $p_T$ muon selection | Tight                      | Tight    | Tight    | Loose                      |
| Muon charges                | SS                         | SS       | OS       | -                          |
| $ m_{\mu\mu}^{OS} - M_Z $   | -                          | -        | <10 GeV  | >10 GeV                    |



| Operator                          | Lorentz Structure                                                         |        |
|-----------------------------------|---------------------------------------------------------------------------|--------|
| $O_{lq}^{1(ijkl)}$                | $(\bar{l}_i \gamma^\mu l_j)(\bar{q}_k \gamma_\mu q_l)$                    | Vector |
| $O_{lq}^{3(ijkl)}$                | $(\bar{l}_i \gamma^\mu \sigma^I l_j) (\bar{q}_k \gamma_\mu \sigma^I q_l)$ | Vector |
| $O_{eq}^{(ijkl)}$                 | $(\bar{e}_i \gamma^\mu e_j)(\bar{q}_k \gamma_\mu q_l)$                    | Vector |
| $O_{lu}^{(ijkl)}$                 | $(\bar{l}_i \gamma^{\mu} l_j) (\bar{u}_k \gamma_{\mu} u_l)$               | Vector |
| $O_{eu}^{(ijkl)}$                 | $(\bar{e}_i\gamma^{\mu}e_j)(\bar{u}_k\gamma_{\mu}u_l)$                    | Vector |
| ${}^{\ddagger}O_{lequ}^{1(ijkl)}$ | $(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$                              | Scalar |
| ${}^{\ddagger}O_{lequ}^{3(ijkl)}$ | $(\bar{l}_i\sigma^{\mu\nu}e_j)\varepsilon(\bar{q}_k\sigma_{\mu\nu}u_l)$   | Tensor |

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{lq}^{-(ijk3)}|^2 + 4|c_{eq}^{(ijk3)}|^2 + 4|c_{lu}^{(ijk3)}|^2 + 4|c_{eu}^{(ijk3)}|^2 + 4|c_$$