Recent results from the NA62 experiment at CERN*

Peter Cooper

(George Mason University)

pcooper.fnal@gmail.com

* with slides gratefully liberated from E. Goudzovski

Outline:

- 1) Introduction: rare kaon decays
- 2) The K+ $\rightarrow \pi^+ \nu \nu$ measurement at NA62
- 3) Other NA62 results: hidden sectors, lepton flavour violation
- 4) Long-terms plans for kaon experiments at CERN
- 5) Summary and outlook

$K\rightarrow\pi\nu\nu$ in the Standard Model

SM: Z-penguin and box diagrams

"Golden modes": extremely rare decays, precise SM predictions.

- \bigstar Maximum CKM suppression: $\sim (m_t/m_W)^2 |V^*_{ts}V_{td}|$.
- No long-distance contributions from amplitudes with intermediate photons.
- \clubsuit Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.

Mode	Standard Model BR	Experimental status	
$\mathbf{K}^{+} \rightarrow \pi^{+} \nu \nu$	$(8.60\pm0.42)\times10^{-11}$	(10.6±4.0)×10 ⁻¹¹ (NA62 Run 1)	
$K_{I} \! \to \! \pi^0 \! \vee \! \vee$	(2.94±0.15)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL	
		(KOTO 2015 data)	

Standard Model BR: a new $|V_{cb}|$ and γ -independent determination.

[Buras and Venturini, arXiv:2109.11032]

$K \rightarrow \pi \nu \nu$ and new physics

- ❖ Correlations between BSM contributions to K⁺ and K_L BRs. [JHEP 11 (2015) 166]
- Need to measure both K^+ and K_L to discriminate among BSM scenarios (within SM, this allows for a clean β angle measurement).
- \diamond Correlations with other observables (ϵ'/ϵ , ΔM_K , B decays). [JHEP 12 (2020) 97]

- ❖ Green: CKM-like flavour structure
 ✓ Models with MFV
- Blue: new flavour-violating interactions in which LH or RH couplings dominate
 - ✓ Z' models with pure LH/RH couplings
- Red: general NP models without the above constraints
- The Grossman-Nir bound: a model-independent relation

$$\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$$

Kaons: other opportunities

- ❖ Direct and indirect CP violation in $K^0 \rightarrow \pi\pi$ decays (ε, ε'), and the $K_L K_S$ mass difference (ΔM_K) [no experiments planned]
 - ✓ Improving capabilities of lattice QCD to provide accurate SM predictions: opportunities for discovery of new physics.
 - ✓ SM precision on ε'/ε can match that of the experiment within a decade, motivating a new measurement.
- \clubsuit Measurement of V_{us} with $K \rightarrow \pi \ell \nu$ decays. [no experiments planned]
 - √ V_{us} accounts for 50% of the uncertainty in the first-row CKM unitarity test.
 - ✓ Uncertainty in V_{us} : equal contributions from experiment $[BR(K \rightarrow \pi \ell v)]$ and theory [decay constants f_K/f_{π} , form-factor $f_{+}(0)$].
 - ✓ Improvements on lattice QCD expected, motivating new measurements.
- ❖ Lepton universality tests, lepton flavour & number conservation tests.
 - ✓ BR(K+→(π^{0})e+ ν)/BR(K+→(π^{0}) μ + ν), BR(K+→ π +e+e-)/BR(K+→ π + μ + μ -); searches for K+→ π +(π^{0}){{}, K_L→(π^{0})(π^{0}) μ e, K_L→2 μ 2e, ...
- Searches for light hidden sectors: unique sensitivity due to large datasets and suppression of the kaon decay width.

Kaon experiments at CERN

The NA62 experiment

- ❖ In 2018, 1 year of operation ≈ 10^{18} protons on target; 4×10^{12} K+ decays.
- ❖ Single event sensitivities for K+ decays: approaching BR~10-12.
- **\Lambda** Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi^0} > 40$ GeV) ~ 10^{-8} .
- ❖ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁵ muon suppression.

NA62 Run 1 dataset: 2016-18

Run 1 integrated luminosity

2.2×10¹⁸ POT collected (3×10¹⁶ from 50h in dump mode)

- Commissioning run 2015: minimum bias data (~3×10¹º protons/pulse).
- ❖ Physics run 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- ❖ Physics run 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ❖ Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- Run 2 (2021-): in progress (~3×10¹² ppp), approved till LS3.

NA62: K_{myy} signal regions

Main K+ decay modes (>90% of BR) rejected kinematically.

Resolution on m²_{miss}: $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/\text{c}^2$.

Measured kinematic background suppression:

$$\checkmark$$
 K⁺→ π ⁺ π ⁰: 1×10⁻³;
 \checkmark K⁺→ μ ⁺ ν : 3×10⁻⁴.

Further background suppression:

- ✓ PID (calorimeters & RICH): μ suppression 10-8, π efficiency = 64%.
 - Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ rejection factor = 1.4×10^{-8} .

Expected backgrounds (2018 data)

	Background	Subset S1 (old collimator)	Subset S2 (new collimator)	
	$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05	Data-driven
	$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06	background
	$\pi^+\pi^-e^+ u$	0.10 ± 0.03	0.41 ± 0.10	estimates
	$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08	
	$\pi^+\gamma\gamma$	< 0.01	< 0.01	
	$\pi^0 l^+ u$	< 0.001	< 0.001	
	$\operatorname{Upstream}$	$0.54^{+0.39}_{-0.21}$	$2.76^{+0.90}_{-0.70}$	Dominant background: a data-driven estimate
	Total	$1.11^{+0.40}_{-0.22}$	$\begin{array}{ c c c c c c }\hline 4.31^{+0.91}_{-0.72} \\ \hline \end{array}$	
_	BR _{SES} ×10 ¹⁰	0.54±0.04	0.14±0.01	
	$N_{\pi uar u}^{ m exp}$	1.56±0.21	6.02±0.82	

- ❖ Most background is not due to K⁺ decays in the vacuum tank.
- Improved the beamline layout and new upstream veto detectors bring the Run 2 measurement into a low-background regime.

Opening the box (2018 data)

0.02

0.04

0.06

0.08

History of $K^+ \rightarrow \pi^+ \nu \nu$ searches

Hidden sectors with $K^+ \rightarrow \pi^+ \nu \nu$

- Signal regions R1,R2: search for K+ $\rightarrow \pi$ +X (X=invisible), $0 \le m_X \le 110$ MeV/c² and $154 \le m_X \le 260$ MeV/c².
 - ✓ Interpretation: dark scalar, ALP, QCD axion, axiflavon.
 - ✓ Main background: $K^+ \rightarrow \pi^+ \nu \nu$.
- ♦ The $\pi^+\pi^0$ region: search for π^0 →invisible.
 - ✓ SM rate: BR($\pi^0 \rightarrow \nu \nu$)~10⁻²⁴.
 - ✓ Observation = BSM physics.
 - ✓ Reduction of $\pi^0 \rightarrow \gamma\gamma$ background: optimised π^+ momentum range.
 - ✓ Interpretation as K⁺→π⁺X, with m_x between R1 and R2.

Search for $K^+ \rightarrow \pi^- e^+ e^+$ (Run 1)

Search for K+ $\rightarrow \pi \mu e$ decays (Run 1)

K+ decays in FV: (1.33±0.02)×1012

Expected background: 1.07±0.20 evt

Candidates observed: 0

BR(K+ $\rightarrow \pi^-\mu^+e^+$)<4.2×10⁻¹¹ at 90% CL

Expected background: 0.92±0.34 evt

Candidates observed: 2

BR(K+ $\to \pi^+ \mu^- e^+$)<6.6×10⁻¹¹ at 90% CL

BR($\pi^0 \rightarrow \mu^- e^+$)<3.2×10⁻¹⁰ at 90% CL

[PRL 127 (2021) 131802]

NA62 Run 2: 2021-LS3

- \clubsuit The technique is firmly established. Run 2: $K^+ \rightarrow \pi^+ \nu \nu$ measurement in a low-background, high-acceptance regime, at O(10%) precision.
- Modifications of the setup for background reduction:
 - ✓ fourth kaon beam tracker (GTK) station;
 - ✓ rearrangement of beamline elements around the GTK achromat;
 - ✓ new veto hodoscopes upstream of the decay volume;
 - √ an additional veto counter around downstream beam pipe.
- ❖ Improved TDAQ: beam intensity increased by ~30% wrt Run 1.
- ❖ Collection of 10¹⁸ pot in up to 90 days in beam dump mode is foreseen.

P Cooper / DIS2023, 29 March 2023

Fixed target runs at CERN SPS

- SPS fixed target operation foreseen until at least 2038.
- HIKE ("High-Intensity Kaon experiment"): a long-term programme at the SPS proposed to search for new physics in kaon decays.
- Measurements of rare K^+ and K_1 kaon decay modes: a clear insight into the flavour structure of new physics.
- ❖ Details in a Snowmass white paper: arXiv:2204.13394.

Summary and outlook

- Rare kaon decays ($K \rightarrow \pi \nu \nu$, ...): unique probes for heavy new physics at the O(100 TeV) mass scale, and for light hidden sectors.
- ❖ Precision measurements of both K+ and K⁰ decays are essential.
- * NA62 is improving on BR(K+ $\rightarrow \pi^+ \nu \nu$), aiming at O(10%) precision by 2025.
- Next generation rare kaon experiments with high-intensity beams will provide a powerful tool to search for BSM physics.
- ♦ A long-term K⁺ and K_L programme ("HIKE") is taking shape at CERN.
- Other operating kaon experiments: KOTO at JPARC, LHCb at CERN. Both are planning ambitious future programmes.