Search for off-shell production of the Higgs boson and measurement of its total width with the ATLAS experiment Will Leight, for the ATLAS Experiment DIS2023, East Lansing, Michigan

arXiv:2207.00320

Events / 2.5 GeV

- Higgs peak in the $H \rightarrow ZZ \rightarrow 4\mu$ channel
 - Best achievable resolution is still >1 GeV
- Predicted Γ_H of 4.1 MeV cannot be directly observed

• Solution: move away from the mass peak

• Solution: move away from the mass peak

• On-shell, production ~ $1/\Gamma_{H}$

• Solution: move away from the mass peak

 But in the ZZ channel, as m_{ZZ} approaches 2m_Z, this is not longer the case

- The additional decay phase space dominates over the dropoff due to the q^2 dependence of the propagator

Solution: move away from the mass peak

• Above 2m_z, the production cross-section is no longer dependent on the width

• Therefore Γ_H can be obtained from a ratio of on-shell and off-shell production

• Solution: move away from the mass peak

 Important assumption: gggH follows the SM prediction
 → No new particles enter the quark loop, so on-shell and offshell production are the same

 Above 2m_Z, the production cross-section is no longer dependent on the width

- Therefore Γ_H can be obtained from a ratio of on-shell and off-shell production

Signal-Background Interference

- The signal gg→H*→ZZ and background gg→ZZ process interfere
 - We measure a deficit in the background, not a signal
- Signal scales with $\mu_{offshell}$ but the interference goes as $\sqrt{\mu_{offshell}}$

Signal-Background Interference

CERN-EP-2023-03

- Yield dependence on µ_{offshell} is therefore not linear
 - Asymptotic approximation does not hold
 - → Confidence intervals have to be derived using the Neyman construction

- - Constrained using data CRs, 180<m₄₁<220 GeV, N_{jets}=0,1, \geq 2
 - Other backgrounds are mainly ttV and VVV, fakes from Z+jet and ttbar are negligible

CERN-EP-2023-03

NNs trained to separate ggF and EW signal from non-interfering qqZZ and interfering gg and qq backgrounds

- qqZZ production is still the dominant background
 - Constrained using 4I CRs
- Transverse mass m_T^{ZZ} is used a

CERN-EP-2023-03

2I2v Final State

- Separate CRs constructed to constrain WZ, Z+jets, and non-resonant backgrounds

as the observable
$$m_{\mathrm{T}}^{ZZ} \equiv \sqrt{\left[\sqrt{m_{Z}^{2} + \left(p_{\mathrm{T}}^{\ell\ell}\right)^{2}} + \sqrt{m_{Z}^{2} + \left(E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}}\right]^{2} - \left|\vec{p_{\mathrm{T}}}^{\ell\ell}\right|^{2}}$$

- Observables do a good job of enhancing S/B at higher values - For both ggF and EW production
- Interference (dashed) goes opposite to signal (solid)

Data / Exp

Measurement of Off-shell Production

- Both channels combined in final result
- Not in the asymptotic limit \rightarrow confidence intervals are constructed from pseudoexperiments
 - Curves instead of straight lines on the scan
- Measured value of µ_{off-shell}=1.1, 95% CL upper limit of $2.4 \rightarrow 3.3\sigma$ evidence for off-shell production
 - Stat-limited measurement
 - Main systematics from jets and background theory
- Background scale factors are consistent with the SM

		Normalization factor	Fitted
Normalization factor	Fitted value	$\mu_{3\ell}$	1.06 =
$\mu_{ m qqZZ}$	1.11 ± 0.07	$\mu^{1j}_{3\ell}$	0.92 =
$\mu_{ m agZZ}^{1j}$	0.90 ± 0.10	$\mu^{2j}_{3\ell}$	0.75 =
$\mu_{\alpha \alpha ZZ}^{2j}$	0.88 ± 0.26	$\mu_{ m Zj}$	0.90 =
		$\mu_{e\mu}$	1.08 =

13

Measurement of Off-shell Production

- Simultaneous measurement of off-shell EW and ggF production
 - Instead of assuming the same μ value for both
 - Contours correspond to 68% and 95% limits in asymptotic approximation
 - Valid within 5-10%
- Good agreement with the SM observed

Higgs Width Interpretation

- By combining with the results of previous on-shell measurements, can constrain $\Gamma_{\rm H}$
- Γ_H=4.5^{+3.3}-2.5 MeV, with 95% CL limits of 0.5<Γ_H<10.5 MeV
 - Again using the Neyman construction for confidence intervals
- Good agreement observed with the SM
 - Assuming SM ggH production

- \bullet
 - Separately for EW and ggF; R_{VV}=1 for R_{gg} determination and vice versa
 - Assuming the SM width
- Good agreement with the SM observed

CERN-EP-2023-03

Couplings Interpretation

Can also use the combination to constrain the ratio of on-shell and off-shell couplings

d;
$$R_{VV}=0.9^{+0.3}-0.3$$
, $R_{gg}=1.4^{+1.1}-1.4$

16

- Evidence of off-shell production in the $H \rightarrow ZZ$ decay channel
- Measured $\Gamma_{\rm H}$ to be 4.5^{+3.3}-2.5 MeV

 - Under the assumption that off-shell and on-shell production are the same - Also of ratio of on- and off-shell coupling modifiers, assuming Γ_{H} matches the SM prediction
- Statistics-limited measurement so additional data from Run-3 will be welcome

Summary and Outlook

Backup

41 SR and CR Definitions

EW SR	Mixed SR	ggH SR	0-jet 4l CR	1-jet 4l CR	2-jet 4l CR
N _{jets} ≥2	N _{jets} =1	N _{jets} =0 or (N _{jets} =1 and η _j <2.2) or (N _{jets} ≥2 and Δη _{jj} <4)	N _{jets} =0	N _{jets} =1	N _{jets} ≥2
Δη _{jj} >4	η _j >2.2		180 <m4i<220 gev<="" th=""><th>180<m4i<220 gev<="" th=""><th>180<m4i<220 gev<="" th=""></m4i<220></th></m4i<220></th></m4i<220>	180 <m4i<220 gev<="" th=""><th>180<m4i<220 gev<="" th=""></m4i<220></th></m4i<220>	180 <m4i<220 gev<="" th=""></m4i<220>
m4	m4 >220 GeV • Unpre • 3 lead • ΔR(l,l') • 50 <m< th=""><th>m₄l>220 GeV escaled single-lepton f ling lepton p⊤ threshol)>0.1</th><th>triggers Ids are 20, 15, and 10</th><th>0 GeV</th><th></th></m<>	m₄l>220 GeV escaled single-lepton f ling lepton p⊤ threshol)>0.1	triggers Ids are 20, 15, and 10	0 GeV	

• Four leptons must pass a vertex fit

2l2v SR and CR Definitions

	EW SR	Mixed SR	ggH SR	0-jet 3l CR	1-jet 3l CR	2-jet 3l CR	eµ CR	Zjets C
	N _{jets} ≥2	N _{jets} =1	N _{jets} =0 OR	N _{jets} =0	N _{jets} =1	N _{jets} ≥2	OFOS pair	
	Δη _{jj} >4	η _j >2.2	$(N_{jets}=1, \eta_j < 2.2)$ OR $(N_{jets} \ge 2, \Delta \eta_{jj} < 4)$	3rd lepton with p⊤>20 GeV	3rd lepton with p⊤>20 GeV	3rd lepton with p⊤>20 GeV		
7	7 GeV I₃ veto	7 GeV I ₃ veto	7 GeV I ₃ veto	7 GeV I ₄ veto	7 GeV I4 veto	7 GeV I4 veto	7 GeV I ₃ veto	7 GeV I₃ v
E	r ^{miss} >120 GeV	Ermiss>120 GeV	ET ^{miss} >120 GeV	mt ^w >60 GeV	mt ^w >60 GeV	mt ^w >60 GeV	E _T miss>120 GeV	E _T miss>120
	ΔR _{II} <1.8	ΔR⊪<1.8	ΔR _{II} <1.8	$m_T(W) = 1$	$\sqrt{2p_T^{\ell}E_T^{\text{miss}}(1-$	$cos\Delta\phi)$	ΔR _{II} <1.8	$\Delta R_{\parallel} < 1.$
Δ	ф(р _{т,⊪} ,Е⊤ ^{miss})> 2.5	∆ф(р _{т,॥} ,Е _т ^{miss})> 2.5	Δф(р _{т,⊪} ,Е⊤ ^{miss})> 2.5				∆ф(р _{т,⊪} ,Е⊤ ^{miss})> 2.5	Δф(р _{т,⊪} ,Е⊤ ⁿ 2.5
	Δ φ(jet >100, E⊤ ^{miss})>0.4	Δ φ(jet >100, E⊤ ^{miss})>0.4	Δ φ(jet >100, E⊤ ^{miss})>0.4				Δ φ(jet >100, E⊤ ^{miss})>0.4	
E	r ^{miss} signif>10	E _T ^{miss} signif>10	E _T ^{miss} signif>10	E _T ^{miss} signif>3	E _T ^{miss} signif>3	E _T ^{miss} signif>3	E _T ^{miss} signif>10	E _T miss sign
	b-jet veto	b-jet veto	b-jet veto • Unpi	b-jet veto rescaled single-lepte	b-jet veto on triggers	b-jet veto	b-jet veto	b-jet ve [.]
			 Lept 	on p⊤>20 GeV				

• 76<m_{ll}<106 GeV

Leading Systematic Uncertainties

Process	Uncertainty	Final State	Value (%)		
ggF Signal Region					
$qq \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	4-40		
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	21–28		
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	22–37		
$qq \rightarrow ZZ + 2j$	Parton Shower	$2\ell 2\nu$	1–67		
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \to H^* \to ZZ$	Parton Shower	$2\ell 2\nu$	8–45		
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38		
$gg \rightarrow ZZ$	Parton Shower	$2\ell 2\nu$	6–43		
WZ + 0j	QCD Scale	$2\ell 2\nu$	1–54		
	1-jet Signal Re	gion			
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \to H^* \to ZZ$	QCD Scale	$2\ell 2\nu$	13–18		
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38		
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18–20		
$qq \rightarrow ZZ (\mathrm{EW})$	QCD Scale	$2\ell 2\nu$	7–18		
2-jet Signal Region					
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	18–26		
$qq \rightarrow ZZ + 2j$	QCD Scale	$2\ell 2\nu$	8–32		
$gg \to H^* \to ZZ$	Parton Shower	4ℓ	27		
$gg \rightarrow ZZ$	Parton Shower	4ℓ	38		
$gg \rightarrow ZZ$	QCD Scale	$2\ell 2\nu$	18–20		
WZ + 2j	QCD Scale	$2\ell 2\nu$	20–22		
($qq \rightarrow ZZ$ Control	Regions			
$qq \rightarrow ZZ + 2j$	QCD Scale	4ℓ	26		
Three-lepton Control Regions					
$\overline{WZ+2j}$	QCD Scale	$2\ell 2\nu$	28		

Systemat Parton sh NLO EW NLO QC

Parton sh

Jet energ

None

tic Uncertainty Fixed	$\mu_{\text{off-shell}}$ value at which $-2 \ln \lambda(\mu_{\text{off-shell}}) = 4$
hower uncertainty for $gg \rightarrow ZZ$ (normalisation)	2.26
hower uncertainty for $gg \rightarrow ZZ$ (shape)	2.29
V uncertainty for $qq \rightarrow ZZ$	2.27
CD uncertainty for $gg \rightarrow ZZ$	2.29
hower uncertainty for $qq \rightarrow ZZ$ (shape)	2.29
gy scale and resolution uncertainty	2.26
	2.30

Yields

Process	ggF SR	Mixed SR	EW SR
$gg \to (H^* \to)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4
$qq \rightarrow (H^* \rightarrow)ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0
Observed	2327	178	50
Process	ggF SR	Mixed SR	EW SR
$gg \to (H^* \to)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
$gg \to H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \rightarrow ZZ$	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$qq \rightarrow (H^* \rightarrow)ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$qq \rightarrow ZZ$	1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
WZ	678 ± 54	51.9 ± 6.9	7.89 ± 2.50
Z+jets	62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Non-resonant- $\ell\ell$	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Other backgrounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Total expected (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2496 22	181	27

Process	ggF SR	Mixed SR	EW SR
$gg \to (H^* \to)ZZ$	341 ± 117	42.5 ± 14.9	11.8 ± 4.3
$gg \to H^* \to ZZ$	32.6 ± 9.07	3.68 ± 1.03	1.58 ± 0.47
$gg \rightarrow ZZ$	345 ± 119	43.0 ± 15.2	11.9 ± 4.4
$qq \rightarrow (H^* \rightarrow)ZZ + 2j$	23.2 ± 1.0	2.03 ± 0.16	9.89 ± 0.96
$qq \rightarrow ZZ$	1878 ± 151	135 ± 23	22.0 ± 8.3
Other backgrounds	50.6 ± 2.5	1.79 ± 0.16	1.65 ± 0.16
Total expected (SM)	2293 ± 209	181 ± 29	45.3 ± 10.0
Observed	2327	178	50
Process	ggF SR	Mixed SR	EW SR
$gg \to (H^* \to)ZZ$	210 ± 53	19.7 ± 4.9	4.29 ± 1.10
$gg \to H^* \to ZZ$	111 ± 26	10.9 ± 2.5	3.26 ± 0.82
$gg \rightarrow ZZ$	251 ± 66	23.4 ± 6.2	5.31 ± 1.46
$qq \rightarrow (H^* \rightarrow)ZZ + 2j$	14.0 ± 3.0	1.63 ± 0.17	4.46 ± 0.50
$qq \rightarrow ZZ$	1422 ± 112	80.4 ± 11.9	7.74 ± 2.99
WZ	678 ± 54	51.9 ± 6.9	7.89 ± 2.50
Z+jets	62.3 ± 24.3	7.51 ± 6.94	0.62 ± 0.54
Non-resonant- $\ell\ell$	106 ± 39	9.17 ± 2.73	1.55 ± 0.42
Other backgrounds	22.6 ± 5.2	1.62 ± 0.25	1.40 ± 0.10
Total expected (SM)	2515 ± 165	172 ± 17	28.0 ± 4.1
Observed	2496 22	181	27

Data-MC comparison in Inclusive SR

• Post-fit, with µ_{offshell}=1 assumed in the fit