Renormalization of twist-two operators in covariant gauge to three loops in QCD

Tong-Zhi Yang
with Thomas Gehrmann and Andreas von Manteuffel Based on 2302.00022

DIS2023, MSU, 30 March 2023

Universität
Zürich ${ }^{\text {ZZH }}$

Established by the European Commission

Parton denstities and splitting functions

- Bjorken variable

$$
x_{B}=\frac{-q^{2}}{2 P \cdot q}
$$

- Factorization

$$
\sigma \sim \sum_{a} f_{a \mid N}\left(x_{B}\right) \otimes \hat{\sigma}_{a}\left(x_{B}\right)
$$

- Quark parton density in axial gauge

$$
f_{q \mid N}\left(x_{B}\right)=\int \frac{d t}{2 \pi} e^{-i x_{B} t \Delta \cdot p}\langle N(P)| \bar{\psi}(t \Delta) \frac{\Delta}{2} \psi(0)|N(P)\rangle, \Delta^{2}=0
$$

- Splitting functions (SFs) govern the DGLAP evolutions of PDFs

$$
\frac{d f_{i \mid N}}{d \ln \mu}=2 \sum_{k} P_{i k} \otimes f_{k \mid N}
$$

Why 4-loop SFs for the evolutions of N3LO PDFs?

- Expand PDFs and SFs with $a_{s}=\alpha_{s} /(4 \pi)$

$$
\begin{array}{r}
f_{i \mid N}=f_{i \mid N}^{(0)}+f_{i \mid N}^{(1)} a_{s}+\cdots+f_{i \mid N}^{(3)} a_{s}^{3}+\cdots \\
P_{i j}=P_{i j}^{(0)} a_{s}+\cdots+P_{i j}^{(3)} a_{s}^{4}+\cdots
\end{array}
$$

- Evolution of a_{s}

$$
\frac{d a_{s}}{d \ln \mu}=-2\left(a_{s}^{2} \beta_{0}+a_{s}^{3} \beta_{1}+\cdots\right)
$$

- A consistent evolution of N3LO PDFs requires 4-loop SFs

$$
f_{i \mid N}^{(3)} \frac{d a_{s}^{3}}{d \ln \mu}=f_{i \mid N}^{(3)}\left(-6 a_{s}^{4} \beta_{0}+\cdots\right)=\sum_{k} P_{i k}^{(3)} a_{s}^{4} \otimes f_{k \mid N}^{(0)}+\cdots
$$

Motivations for four-loop splitting functions

- Several $\hat{\sigma}$ are available at N3LO, but N3LO PDFs are missing
- The fields in fitting N3LO PDFs are active
- MSHT20 aN3LO talks by Thomas Cridge,Lucian Harland-Lang
- NNPDF in progress towards aN3LO talk by Giacomo Magni
- CT are planning talk by Pavel Nadolsky

- Scale uncertainty at N3LO using NNLO PDF remains at 1% level talk by Thomas Gehrmann
- Seems that aN3LO PDF introduces large corrections to σ talk by Tobias Neumman

Splitting functions \& Anomalous dimensions

- Mellin transformation

$$
f_{q}(n)=-\int_{0}^{1} d z z^{n-1} f_{q}(z), \quad \gamma_{i j}(n)=-\int_{0}^{1} d z z^{n-1} P_{i j}(z)
$$

- DGLAP evolution in n-space

$$
\frac{d}{d \ln \mu} f_{q}\left(n, \mu^{2}\right)=-2 \sum_{j} \gamma_{q j}(n) f_{j}\left(n, \mu^{2}\right)
$$

- PDFs in n-space are hadronic operator matrix elements (OMEs)

$$
f_{q}(n) \sim\langle N(P)| \bar{\psi} \Delta(\Delta \cdot D)^{n-1} \psi|N(P)\rangle
$$

Twist-two operators

According to the flavor group,

- Non-singlet: a single operator

$$
O_{q, k}=\frac{i^{n-1}}{2}\left[\bar{\psi}_{i} \Delta(\Delta \cdot D)_{i j}^{n-1} \frac{\lambda_{k}}{2} \psi_{j}\right], k=3,8, \cdots n_{f}^{2}-1
$$

$\lambda_{k} / 2$ is the diagonal generator of the flavor group

- Singlet: two operators

$$
\begin{aligned}
& O_{q}=\frac{i^{n-1}}{2}\left[\bar{\psi}_{i} \not \Delta(\Delta \cdot D)_{i j}^{n-1} \psi_{j}\right] \\
& O_{g}=-\frac{i^{n-2}}{2}\left[\Delta_{\mu_{1}} G_{a, \mu}^{\mu_{1}}(\Delta \cdot D)_{a b}^{n-2} \Delta_{\mu_{n}} G_{b}^{\mu_{n} \mu}\right]
\end{aligned}
$$

$G_{a}^{\mu \nu}$ is the gluon field strength tensor.

Renormalization of twist-two operators

- The non-singlet operator $O_{q, k}$ is multiplicatively renormalized,

$$
O_{q, k}^{\mathrm{R}}=Z^{\mathrm{ns}} O_{q, k}^{\mathrm{B}}
$$

- The two singlet operators mix under renormalization,

$$
\binom{O_{q}}{O_{g}}^{\mathrm{R}, \text { naive }}=\left(\begin{array}{cc}
Z_{q q} & Z_{q g} \\
Z_{g q} & Z_{g g}
\end{array}\right)\binom{O_{q}}{O_{g}}^{\mathrm{B}}
$$

- Evolution equation for the renormalization constants

$$
\frac{d Z_{i j}}{d \ln \mu}=-2 \sum_{k=q, g} \gamma_{i k}(n) Z_{k j}
$$

- Extract anomalous dimensions from the renormalization constants

$$
Z_{i j}=\delta_{i j}+\sum_{l=1}^{\infty} a_{s}^{l} \frac{1}{l \epsilon} \gamma_{i j}^{(k-1)}+\cdots
$$

DIS method vs OME method

- Forward DIS (gauge invariant)

Shrinking the heavy lines into effective vertices

- Partonic off-shell OME (fewer diagrams, easier integrals)

1 diagram

3 diagrams

37 diagrams

684 diagrams

15901 diagrams

- Off-shell OMEs are not gauge invariant (due to off-shell external gluons), physical operators mix with unknown gauge-variant (GV) operators
- Main goal: find all GV operators or their Feynman rules

Once all GV operators are known, the off-shell OME method can be used to determine SFs efficiently

A bit of history about the calculations of SFs

- The first one-loop results are from off-shell OMEs
- Non-singlet and singlet [D.J. Gross, F. Wilczek, 1973, 1974]
- Two-loop results
- Non-singlet from off-shell OMEs[E.G. Floratos et al. 1977]
- Singlet: inconsistences from off-shell OMEs (Flaws due to omitting GV operators)[E.G. Floratos et al. 1978] and from DIS (Correct) [Furmanski and Petronzio, 1980]
- The first three-loop results are from DIS
- Non-singlet and Singlet[Moch, Vermaseren and Vogt, 2004,2004]
- Partial four-loop results
- Non-singlet with $n \leq 16$ from off-shell OMEs[S. Moch et al. 2017]
- Singlet with $n \leq 8$ from DIS[S. Moch et al. 2021]
- Pure singlet with $n \leq 20$ from off-shell OMEs[G. Falcioni et al. 2023]

Only a few low- n results at four-loop are available
The off-shell OMEs method is much more efficient than DIS method

Significant efforts in deriving GV operators

- [D.J. Gross, F. Wilczek, 1974] pointed out possible mixing with GV operators
- [J.A. Dixon and J.C. Taylor, 1974] constructed order g_{s} GV operators, not clear how to generalize to higher order
- [Joglekar and Lee, 1975] gave a general theorem about the renormalization of gauge invariant operators No explicit results were given
- [J. C. Collins and R. J. Scalise, 1994] studied the renormalization of energy-momentum tensor in detail and pointed out subtleties of theorem by Joglekar and Lee
- [G. Falcioni and F. Herzog, 2022] constructed the GV operators for a fixed n based on a generalized BRST symmetry. Promising, however more and more number of operators are needed for higher n.
- This talk: A new framework which enables the derivation of all- n GV operator (counterterm) Feynman rules to all loop orders

A new framework of deriving gauge-variant operators

- Guiding principles:
- A twist-two operator has infinite mass dimension when $n \rightarrow \infty$
- Infinite GV operators are required to renormalize the physical operators
- Some GV operators only contribute starting at higher-loop order
- Extend the naive renormalization of the operator O_{g},

$$
\begin{gathered}
O_{g}^{\mathrm{R}}=Z_{g q} O_{q}^{\mathrm{B}}+Z_{g g} O_{g}^{\mathrm{B}}+Z_{g A}\left(O_{A}^{\mathrm{B}}+O_{B}^{\mathrm{B}}+O_{C}^{\mathrm{B}}\right)+[Z O]_{g}^{\mathrm{GV}} \\
Z_{g A}=\mathcal{O}\left(a_{s}\right),[Z O]_{g}^{\mathrm{GV}}=\sum_{l=2}^{\infty} a_{s}^{l}[Z O]_{g}^{\mathrm{GV},(l)}
\end{gathered}
$$

- O_{A} (gluon fields only), O_{B} (quark+gluon fileds), O_{C} (ghost + gluon fields). $[Z O]_{g}^{\mathrm{GV},(l)}$: collection of counterterms
- Similarly for O_{q}

$$
O_{q}^{\mathrm{R}}=Z_{q q} O_{q}^{\mathrm{B}}+Z_{q g} O_{g}^{\mathrm{B}}+Z_{q A} O_{A B C}^{B}+[Z O]_{q}^{\mathrm{GV}}, O_{A B C}=O_{A}+O_{B}+O_{C}
$$

Derive Feynman rules from off-shell OMEs

- Key idea: derive Feynman rules instead of GV operators themselves
- Consider off-shell OMEs with $2 j+m$-gluon external states

$$
\begin{aligned}
& \langle j| O_{g}^{\mathrm{R}}|j+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m}}=\langle j|\left(Z_{g q} O_{q}^{\mathrm{B}}+Z_{g g} O_{g}^{\mathrm{B}}\right)|j+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m}} \\
& \quad+\langle j| Z_{g A} O_{A B C}^{\mathrm{B}}|j+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m}}+\langle j|[Z O]_{g}^{\mathrm{GV}}|j+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m}}, j=q, g \text { or } \mathrm{c}
\end{aligned}
$$

- Expand OMEs order by order in loops and legs

$$
\langle j| O|j+m g\rangle^{\mu_{1} \cdots \mu_{m}}=\sum_{l=1}^{\infty}\left[\langle j| O|j+m g\rangle^{\mu_{1} \cdots \mu_{m},(l),(m)}\right]\left(\frac{\alpha_{s}}{4 \pi}\right)^{l} g_{s}^{m}
$$

- Left: UV renormalized and IR finite \rightarrow no poles in ϵ
- Right: Each term is UV divergent, but the sum should be finite
- Requirement of the finiteness allows to determine couterterm Feynman rules of unknown GV operators order by order

Determine Feynman rules for $O_{A B C}$

- As an example, consider two ghosts $+m$-gluon external states and expand to one-loop order

$$
Z_{g A}^{(1)}\langle c| O_{C}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(0),(m)}=-\left[\langle c| O_{g}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(1),(m), \mathrm{B}}\right]_{1 / \epsilon}
$$

- $Z_{g A}^{(1)}$ is a m-independent constant and can be determined from $m=0$

$$
Z_{g A}^{(1)}=\frac{-C_{A}}{\epsilon} \frac{1}{n(n-1)}
$$

Sample digram to extract Feynman rules for O_{C} with $m=2$

Determine Feynman rules for $[Z O]_{g}^{\mathrm{GV},(2)}$

- As an example, consider two ghosts $+m$-gluon external states and expand to two-loop order

$$
\begin{aligned}
& \langle c|[Z O]_{g}^{\mathrm{GV},(2)}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(0),(m)}=-\left\{\left[\langle c| O_{g}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(2),(m), \mathrm{B}}\right.\right. \\
& \quad+\left(Z_{c}^{(1)}+\frac{m Z_{g}^{(1)}}{2}+Z_{g g}^{(1)}-\frac{\beta_{0}(m+2)}{2 \epsilon}\right)\langle c| O_{g}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(1),(m), \mathrm{B}} \\
& \left.\left.\quad+Z_{g A}^{(1)}\langle c| O_{A C}|c+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(1),(m), \mathrm{B}}+\cdots\right]_{\text {div }}\right\}
\end{aligned}
$$

Sample digrams to extract Feynman rules for $[Z O]_{g}^{\mathrm{GV},(2)}$ with $m=1$

Three-loop singlet splitting functions from off-shell OMEs

Sample Feynman diagrams

- Two-point diagrams with physical operators insertion

- Multi-leg diagrams to infer GV counterterm Feynman rules

- Two-point diagrams with GV counterterm insertions

Computational methods

- Non-standard terms appearing in the Feynman rules
- Example: Feynman rules for O_{q} at lowest order

$$
\rightarrow \Delta\left(\Delta \cdot p_{1}\right)^{n-1}
$$

- Sum non-standard term into a linear propagator using a tracing parameter $\boldsymbol{X}[\mathrm{J}$. Ablinger et al. 2012] See also the talk by Kay

$$
(\Delta \cdot p)^{n-1} \rightarrow \sum_{n=1}^{\infty} x^{n}(\Delta \cdot p)^{n-1}=\frac{x}{1-x \Delta \cdot p}
$$

- Derive differential equation(DE) with respect to the parameter x
- Expand DE to high orders in $x \rightarrow 0$ limit and then reconstruct the final results, or solve the DE in terms of special functions

Sample results: Feynman rules for O_{B}

$$
\rightarrow-\frac{1+(-1)^{n}}{2} g_{s} \Delta^{\mu_{3}} T_{i_{2} i_{1}}^{a_{3}} \Delta\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{n-2}
$$

$$
\begin{aligned}
& \rightarrow \frac{1+(-1)^{n}}{-8} g_{s}^{2} \Delta^{\mu_{3}} \Delta^{\mu_{4}}\left(T^{a_{3}} T^{a_{4}}-T^{a_{4}} T^{a_{3}}\right)_{i_{2} i_{1}} \Delta \sum_{j_{1}=0}^{n-3}(\\
& 3\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{-j_{1}+n-3}\left[\left(-\Delta \cdot p_{3}\right)^{j_{1}}-\left(-\Delta \cdot p_{4}\right)^{j_{1}}\right] \\
& \left.-\left(-\Delta \cdot p_{4}\right)^{j_{1}}\left(\Delta \cdot p_{3}\right)^{-j_{1}+n-3}\right)
\end{aligned}
$$

Feynman rules for O_{B} operator with all momenta flowing into the vertex

Sample results for two-loop counterterm Feynman rules

$$
\begin{aligned}
\rightarrow & 2 i g_{s} C_{A}^{2} f^{a_{1} a_{2} a_{3}} \frac{1+(-1)^{n}}{256 n(n-1)} \frac{\left(\Delta \cdot p_{1}\right)^{n-2}}{\Delta \cdot p_{2}}\left(-\Delta^{\mu_{1}} \Delta^{\mu_{2}} \Delta^{\mu_{3}} \sum_{i=1}^{3} p_{i}^{2}\right. \\
& \left.+\Delta^{\mu_{2}} \Delta^{\mu_{3}} p_{1}^{\mu_{1}} \Delta \cdot p_{1}+\Delta^{\mu_{1}} \Delta^{\mu_{3}} p_{2}^{\mu_{2}} \Delta \cdot p_{2}+\Delta^{\mu_{1}} \Delta^{\mu_{2}} p_{3}^{\mu_{3}} \Delta \cdot p_{3}\right) \\
& \times\left\{\frac{F_{-2,0}+(1-\xi) F_{-2,1}}{\epsilon^{2}}+\frac{F_{-1,0}+(1-\xi) F_{-1,1}}{\epsilon}\right\}
\end{aligned}
$$

- ϵ-dependent and ξ-dependent
- $F_{-1,0}$ contains generalized harmonic sums to weight-2
- Weight-3 polylogarithms in x-space

Two-point OMEs with two-loop counterterm insertions

- For a fixed n, normal IBP, but need to reduce integrals with very high numerator degree
- All- n, IBP reduction with polylogarithms?

- Consider a general term of two-loop counterterms with 3-gluon vertex

$$
i g_{s} f^{a_{1} a_{2} a_{3}} C_{A}^{2} \Delta^{\mu_{1}} \Delta^{\mu_{2}} \Delta^{\mu_{3}} p_{1}^{2} \sum_{m=0}^{n-3} a_{m n}\left(\Delta \cdot p_{1}\right)^{m}\left(\Delta \cdot p_{2}\right)^{n-3-m}+\cdots
$$

where $a_{m n}$ is known only for fixed m, n

- New idea: replace $a_{m n}$ by another tracing parameter t

$$
h(x, t)=\sum_{n=3}^{\infty} x^{n} \sum_{m=0}^{n-3} t^{m}\left(\Delta \cdot p_{1}\right)^{m}\left(\Delta \cdot p_{2}\right)^{n-3-m}=\frac{x^{3}}{\left(1-x t \Delta \cdot p_{1}\right)\left(1-x \Delta \cdot p_{2}\right)}
$$

- Insert h into two-point diagrams: $\langle g| h(x, t)|g\rangle=\sum_{n=3}^{\infty} x^{n} \sum_{m=0}^{n-3} t^{m} c_{m n}$
- $\langle g| \sum_{m=0}^{n-3} a_{m n}\left(\Delta \cdot p_{1}\right)^{m}\left(\Delta \cdot p_{2}\right)^{n-3-m}|g\rangle=\sum_{m=0}^{n-3} a_{m n} c_{m n}$

Evaluate OMEs to any fixed n efficiently and reconstruct the full- n results

Results

- Combine results for all two-point OMEs (with O_{q}, O_{g} and GV counterterm insertions)
- Splitting functions: confirm the ξ-independence explicitly for the first time and recover the well known results in the literature
- non-singlet:

$$
\gamma_{\mathrm{ns}}^{(2)}-\gamma_{\mathrm{ns}}^{(2)}[\mathrm{MVV}]=0
$$

- singlet:

$$
\begin{aligned}
\gamma_{q q}^{(2)}-\gamma_{q q}^{(2)}[\mathrm{VMV}] & =0, \gamma_{q g}^{(2)}-\gamma_{q g}^{(2)}[\mathrm{VMV}]=0 \\
\gamma_{g q}^{(2)}-\gamma_{g q}^{(2)}[\mathrm{VMV}] & =0, \gamma_{g g}^{(2)}-\gamma_{g g}^{(2)}[\mathrm{VMV}]=0
\end{aligned}
$$

Summary

- For off-shell OMEs, renormalization of physical operators require unknown GV operators
- Developed a new framework to infer splitting functions
- Two-point OMEs are used to extract splitting functions
- Multi-point (≥ 3) OMEs are required to determine counterterm Feynman rules of the GV operators
- Applied it to derive 3-loop singlet splitting functions and recovered the well known results in the literature
- Can be directly applied to derive four-loop singlet splitting functions

Loops	2	3	4	5
0		$[Z O]_{g}^{\mathrm{GV},(2)} \uparrow$	$O_{A B C} \mathrm{Legs}$	O_{q}, O_{g}
1	$[Z O]_{g}^{\mathrm{GV},(2)}$	$\left.O_{A B C}\right)$	$\left.O_{g}\right)$	
2	$O_{A B C}$	O_{g}		
3	O_{q}, O_{g}			
4				

Decomposition of splitting functions

- The general structure of quark splitting functions,

$$
P_{q_{i} q_{k}}=\delta_{i k} P_{q q}^{V}+P_{q q}^{S}, \quad P_{q_{i} \bar{q}_{k}}=\delta_{i k} P_{q \bar{q}}^{V}+P_{q \bar{q}}^{S}
$$

- Non-singlet and singlet splitting functions

$$
\text { Non-singlet: } P_{\mathrm{ns}}^{ \pm}=P_{q q}^{V} \pm P_{q \bar{q}}^{V}, \quad P_{\mathrm{ns}}^{V}=P^{-}+\overbrace{n_{f}\left(P_{q q}^{S}-P_{q \bar{q}}^{S}\right)}
$$

Singlet: $P_{q q}=P^{+}+\underbrace{n_{f}\left(P_{q q}^{S}+P_{q \bar{q}}^{S}\right)}_{P_{p s}}, P_{q g}, P_{g q}, P_{g g}$

- Evolution of PDFs

$$
\begin{aligned}
& \frac{d T_{i}^{ \pm}}{d \ln \mu}=2 P_{\mathrm{ns}}^{ \pm} \otimes T_{i}^{ \pm}, \frac{d \sum_{k=1}^{n_{f}} q_{k}^{-}}{d \ln \mu}=2 P_{\mathrm{ns}}^{V} \otimes \sum_{k=1}^{n_{f}} q_{k}^{-}, i=3,8, \cdots n_{f}^{2}-1 \\
& T_{3}^{ \pm}=u^{ \pm}-d^{ \pm}, T_{8}^{ \pm}=u^{ \pm}+d^{ \pm}-2 s^{ \pm}, \cdots, q_{k}^{ \pm}=q_{k} \pm \bar{q}_{k} \\
& \frac{d}{d \ln \mu}\binom{\Sigma}{g}=\left(\begin{array}{ll}
P_{q q} & P_{q g} \\
P_{g q} & P_{g g}
\end{array}\right) \otimes\binom{\Sigma}{g}, \quad \Sigma=\sum_{k=1}^{n_{f}} q_{k}^{+}
\end{aligned}
$$

All-n Feynman rules for O_{C}

$$
\begin{aligned}
& \begin{array}{cc}
p_{1}, a_{1}, \text { g}^{2} & \text { g. } \\
\boldsymbol{q}_{2}, a_{2} \\
p_{3}, \mu_{3}, a_{3} & p_{4}, \mu_{4}, a_{4}
\end{array} \\
& \rightarrow \frac{1}{24} \frac{1+(-1)^{n}}{2} g_{s}^{2} \Delta^{\mu_{3}} \Delta^{\mu_{4}}\left\{f ^ { a _ { 1 } a _ { 3 } a } f ^ { a _ { 2 } a _ { 4 } a } \left(6\left(-\Delta \cdot p_{4}\right)^{n-2}+6\left(\Delta \cdot p_{3}\right)^{n-2}\right.\right. \\
& +6\left(\Delta \cdot\left(p_{1}+p_{3}\right)\right)^{n-2}+6\left(\Delta \cdot\left(p_{2}+p_{3}\right)\right)^{n-2}-\sum_{j_{1}=0}^{n-2}[\\
& +\left[\left(-\Delta \cdot p_{3}\right)^{j_{1}}+\left(-\Delta \cdot p_{4}\right)^{j_{1}}\right]\left[3\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}\right. \\
& \left.+3\left(\Delta \cdot p_{2}\right)^{n-j_{1}-2}+\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{n-j_{1}-2}\right] \\
& \left.+9\left[\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}+\left(-\Delta \cdot p_{2}\right)^{n-j_{1}-2}\right]\left[\left(\Delta \cdot\left(-p_{2}-p_{3}\right)\right)^{j_{1}}+\left(\Delta \cdot\left(p_{1}+p_{3}\right)\right)^{j_{1}}\right]\right] \\
& \left.+13 \sum_{j_{1}=0}^{n-2} \sum_{j_{2}=0}^{j_{1}}\left[\left(-\Delta \cdot p_{2}\right)^{j_{1}-j_{2}}\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}\left[\left(\Delta \cdot\left(-p_{2}-p_{3}\right)\right)^{j_{2}}+\left(\Delta \cdot\left(p_{1}+p_{3}\right)\right)^{j_{2}}\right]\right]\right) \\
& +f^{a_{1} a_{2} a} f^{a_{3} a_{4} a}\left(-6\left(\Delta \cdot p_{3}\right)^{n-2}-6\left(\Delta \cdot\left(p_{2}+p_{3}\right)\right)^{n-2}\right. \\
& +\sum_{j_{1}=0}^{n-2}\left[3\left(-\Delta \cdot p_{4}\right)^{j_{1}}\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}\right. \\
& +3\left(-\Delta \cdot p_{3}\right)^{j_{1}}\left(\Delta \cdot p_{2}\right)^{n-j_{1}-2}+\left[5\left(-\Delta \cdot p_{3}\right)^{j_{1}}-4\left(-\Delta \cdot p_{4}\right)^{j_{1}}\right]\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{n-j_{1}-2} \\
& \left.+9\left[\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}+\left(-\Delta \cdot p_{2}\right)^{n-j_{1}-2}\right]\left(\Delta \cdot\left(-p_{2}-p_{3}\right)\right)^{j_{1}}\right]-3 \Delta \cdot p_{2} \sum_{j_{1}=0}^{n-3}[\\
& \left.3\left[\left(-\Delta \cdot p_{3}\right)^{j_{1}}-\left(-\Delta \cdot p_{4}\right)^{j_{1}}\right]\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{n-j_{1}-3}-\left(-\Delta \cdot p_{4}\right)^{j_{1}}\left(\Delta \cdot p_{3}\right)^{n-j_{1}-3}\right] \\
& \left.+\sum_{j_{1}=0}^{n-2} \sum_{j_{2}=0}^{j_{1}}\left[\left(-\Delta \cdot p_{2}\right)^{j_{1}-j_{2}}\left(\Delta \cdot p_{1}\right)^{n-j_{1}-2}\left[\left(\Delta \cdot\left(p_{1}+p_{3}\right)\right)^{j_{2}}-14\left(\Delta \cdot\left(p_{1}+p_{4}\right)\right)^{j_{2}}\right]\right]\right) \\
& +\frac{6 d_{A}^{a_{1} a_{2} a_{3} a_{4}}}{C_{A}}\left(-\sum_{j_{1}=0}^{n-2}\left[\left[\left(-\Delta \cdot p_{3}\right)^{j_{1}}+\left(-\Delta \cdot p_{4}\right)^{j_{1}}\right]\left(\Delta \cdot\left(p_{1}+p_{2}\right)\right)^{-j_{1}+n-2}\right]\right. \\
& \left.\left.+\sum_{j_{1}=0}^{n-2} \sum_{j_{2}=0}^{j_{1}}\left[\left(-\Delta \cdot p_{2}\right)^{j_{1}-j_{2}}\left(\Delta \cdot p_{1}\right)^{-j_{1}+n-2}\left[\left(\Delta \cdot\left(p_{1}+p_{4}\right)\right)^{j_{2}}+\left(\Delta \cdot\left(p_{1}+p_{3}\right)\right)^{j_{2}}\right]\right]\right)\right\} .
\end{aligned}
$$

Lorentz structures of a twist-two operator

- Based on the following two properties
- A twist-two operator has spin- n and mass dimension $n+2$
- Propagator-type Feynman rules like $1 / p^{2}$ can not appear in a vertex
- A twist-2 operator involving quarks or ghosts has one Lorentz structure only

$$
\langle q| O|q+m g\rangle_{1 \mathrm{PI}}^{\mu_{1} \cdots \mu_{m},(0),(m)}=c_{m} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{m}}
$$

- A twist-two operator involving only gluons
- Only $1+3 / 2 m(m-1)$ Lorentz structures for m-gluon Feynman rules
- $m=$ 3: $a_{1} \Delta^{\mu_{1}} \Delta^{\mu_{2}} \Delta^{\mu_{3}}+a_{2} \Delta^{\mu_{1}} \Delta^{\mu_{2}} p_{1}^{\mu_{3}}+\cdots+a_{10} \Delta^{\mu_{3}} g^{\mu_{1} \mu_{2}}$
- 19 for $m=4$ and 31 for $m=5$
- Count the mass dimension of $a_{i}:\left[a_{i}\right]=x_{i}\left[\Delta \cdot p_{j}\right]+y_{i}\left[p_{j} \cdot p_{k}\right]\left(y_{i} \geq 0\right)$ $\left[a_{1}\right]=n-3+y_{1}\left[p_{j} \cdot p_{k}\right]=n+2-3 \rightarrow y_{1}=1\left(\right.$ Linear in $\left.p_{1}^{2}, p_{1} \cdot p_{2} \cdots\right)$ $\left[a_{2}\right]+\left[p_{1}^{\mu_{3}}\right]=n-2+y_{2}\left[p_{j} \cdot p_{k}\right]+1=n+2-3 \rightarrow y_{2}=0$
- Why not $a_{11} \Delta^{\mu_{1}} p_{1}^{\mu_{2}} p_{2}^{\mu_{3}}$

$$
\left[a_{11}\right]+2+3 \geq n-1+y_{11}\left[p_{j} \cdot p_{k}\right]+2+3=n+4\left(\text { if } y_{11}=0\right)
$$

where 3 is mass dimension of the external 3 gluons. Twist- 4 operators

Computations of single pole for one-loop multi-leg OMEs

- Set all Mandelstam variables $p_{1}^{2}, p_{2}^{2} \ldots$ to numerical numbers and reconstruct their linear dependence

- Only two types of integrals are needed, other integrals are finite

$$
I_{1}=\int \frac{d^{d} l}{i \pi^{d / 2}} \frac{1}{\left(l-q_{1}\right)^{2} l^{2}}, \quad I_{2}=\int \frac{d^{d} l}{i \pi^{d / 2}} \frac{1}{\left(l-q_{1}\right)^{2} l^{2}\left(1-x \Delta \cdot\left(l+q_{2}\right)\right)}
$$

- At most x-dependent logarithms appear in the single pole

$$
I_{2}=\frac{1}{\epsilon}\left[\frac{\ln \left(1-x \Delta \cdot q_{1}-x \Delta \cdot q_{2}\right)-\ln \left(1-x \Delta \cdot q_{2}\right)}{-x \Delta \cdot q_{1}}\right]+\mathcal{O}\left(\epsilon^{0}\right)
$$

- Logarithms in x-space $\rightarrow n$-space

$$
\ln \left(1-x \Delta \cdot p_{1}-x \Delta \cdot p_{2}\right)=\sum_{n=1}^{\infty} x^{n}\left[\frac{-1}{n}\left(\Delta \cdot p_{1}+\Delta \cdot p_{2}\right)^{n}\right]
$$

- Factoring out the overall factor $Z_{g A}^{(1)}=-\frac{C_{A}}{\epsilon} \frac{1}{n(n-1)}$

Computations of two-loop three-leg OMEs

- Set all Mandelstam variables $p_{1}^{2}, p_{2}^{2} \ldots$ to numerical numbers and

$$
\Delta \cdot p_{1}=1, \Delta \cdot p_{2}=z_{1}
$$

- Derive DE with respect to x
- Difficult to solve DE in terms of special functions
- Expand DE to x^{100} in the limit of $x \rightarrow 0$, with the boundary conditions being two-loop three-leg integrals without operator insertions[T. G. Birthwright, E. W. N. Glover, and P. Marquard, 04]

Reconstruct two-loop counterterm Feynman rules

- Obtain two-loop three-leg OMEs to x^{96} or $n=96$
- For a fixed n, the result is a polynomial in z_{1}
- Construct full- x or full- n results from data to $n=76$ based on ansatz
- Polylogarithms to weight-3, generalized Harmonic sums to weight-2

$$
\begin{aligned}
G\left(1,1,1 /\left(1+z_{1}\right) ; x\right)=\sum_{n=1}^{\infty} & x^{n}
\end{aligned} \begin{array}{r}
{\left[\frac{S_{1}\left(z_{1}+1 ; n\right)}{n^{2}}+\frac{S_{2}\left(z_{1}+1 ; n\right)}{n}\right.} \\
\\
\left.-\frac{S_{1,1}\left(1, z_{1}+1 ; n\right)}{n}-\frac{\left(z_{1}+1\right)^{n}}{n^{3}}\right]
\end{array}
$$

where $S_{1,1}\left(1, z_{1}+1 ; n\right)=\sum_{t_{1}=1}^{n} \frac{1}{t_{1}} \sum_{t_{2}=1}^{t_{1}} \frac{\left(1+z_{1}\right)^{t_{2}}}{t_{2}}$

- Due to the generalized Harmonic sums, impossible to disentangle
- renormalization constants (no z_{1} dependence)
- operator Feynman rules (no high-weight (≥ 1) functions)

A counterterm Feynman rule \& infinite operator Feynman rules $\left(N_{2}=\infty\right)$

