Collider physics with no PDFs

DIS2023 WG1

Speaker: Mirja Tevio In collaboration with: Tuomas Lappi Heikki Mäntysaari Hannu Paukkunen

University of Jyväskylä
Helsinki Institute of Physics
Center of Excellence in Quark Matter
28.03.2023

Motivation

- Problems with PDFs
- Parametrize non-observable quantities
- Scheme dependence

Motivation

- Problems with PDFs
- Parametrize non-observable quantities
- Scheme dependence
- Physical basis \equiv set of linearly independent DIS observables

Motivation

- Problems with PDFs
- Parametrize non-observable quantities
- Scheme dependence
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Free from the problems with PDFs
- More straightforward to compare to experimental data

Motivation

- Problems with PDFs
- Parametrize non-observable quantities
- Scheme dependence
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Free from the problems with PDFs
- More straightforward to compare to experimental data
- Physical basis previously discussed for example in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825

Motivation

- Problems with PDFs
- Parametrize non-observable quantities
- Scheme dependence
- Physical basis \equiv set of linearly independent DIS observables
- DGLAP evolution of observables in a physical basis
- Free from the problems with PDFs
- More straightforward to compare to experimental data
- Physical basis previously discussed for example in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann 1311.2825
- The novelty of our work:
- Momentum space
- Full three-flavor basis

Straightforward example with only two observables

Singlet and gluon approximation

$$
\Sigma\left(x, Q^{2}\right)=\sum_{q}^{n_{\mathrm{f}}}\left[q(x, Q)+\bar{q}\left(x, Q^{2}\right)\right], \quad \text { where } n_{\mathrm{f}}=3
$$

Straightforward example with only two observables

Singlet and gluon approximation

$$
\Sigma\left(x, Q^{2}\right)=\sum_{q}^{n_{\mathrm{f}}}\left[q(x, Q)+\bar{q}\left(x, Q^{2}\right)\right], \quad \text { where } n_{\mathrm{f}}=3
$$

Express F_{2} and F_{L} in terms of Σ and gluon PDF:

$$
\begin{gathered}
F_{2}\left(x, Q^{2}\right)=x\left\langle e^{2}\right\rangle \Sigma\left(x, Q^{2}\right), \quad \text { where }\left\langle e^{2}\right\rangle \equiv \frac{1}{n_{\mathrm{f}}} \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2} \\
\frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi}}=x\left\langle e^{2}\right\rangle\left[C_{F_{\mathrm{L}} \Sigma} \otimes \Sigma+n_{\mathrm{f}} C_{F_{\mathrm{L}} g} \otimes g\right]
\end{gathered}
$$

First non-zero order in $\alpha_{\mathrm{s}} \longrightarrow F_{2}, \frac{F_{\mathrm{L}}}{\alpha_{\mathrm{s}}} \propto 1$

Straightforward example with only two observables $\underset{\text { this linear mapping }}{\text { We need to invert }} \longrightarrow\left[\begin{array}{c}F_{2} \\ F_{\mathrm{L}} / \frac{\alpha_{S}}{2 \pi}\end{array}\right]=\left[\begin{array}{cc}x\left\langle e^{2}\right\rangle & 0 \\ x\left\langle e^{2}\right\rangle C_{F_{\mathrm{L}} \Sigma} & x\left\langle e^{2}\right\rangle n_{\mathrm{f}} C_{F_{\mathrm{L}} g}\end{array}\right] \otimes\left[\begin{array}{l}\Sigma \\ g\end{array}\right]$

Straightforward example with only two observables
We need to invert this linear mapping

$$
\longrightarrow\left[\begin{array}{c}
F_{2} \\
F_{\mathrm{L}} / \frac{\alpha_{\mathrm{g}}}{2 \pi}
\end{array}\right]=\left[\begin{array}{cc}
x\left\langle e^{2}\right\rangle & 0 \\
x\left\langle e^{2}\right\rangle C_{F_{\mathrm{L}} \Sigma} & x\left\langle e^{2}\right\rangle n_{\mathrm{f}} C_{F_{\mathrm{L}} g}
\end{array}\right] \otimes\left[\begin{array}{l}
\Sigma \\
g
\end{array}\right]
$$

Singlet and gluon PDF in physical basis

$$
\begin{aligned}
\Sigma\left(x, Q^{2}\right)= & \frac{1}{\left\langle e^{2}\right\rangle} 1 \otimes \widetilde{F}_{2} \\
g\left(x, Q^{2}\right)= & \int_{x}^{1} \frac{\mathrm{~d} z}{z} \delta(1-z)\left\{\frac{C_{\mathrm{F}}}{4 T_{\mathrm{R}} n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left[\frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}-2\right] \frac{F_{2}\left(\frac{x}{2}, Q^{2}\right)}{\frac{x}{z}}\right. \\
& \left.+\frac{2 \pi}{\alpha_{\mathrm{s}}\left(Q^{2}\right)} \frac{1}{8 T_{\mathrm{R}} n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left[\frac{x^{2}}{z^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d}\left(\frac{x}{z}\right)^{2}}-2 \frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}+2\right] \frac{F_{\mathrm{L}}\left(\frac{x}{2}, Q^{2}\right)}{\frac{x}{z}}\right\} \\
\equiv & \frac{1}{n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left\{C_{g \widetilde{F}_{2}^{\prime}} \otimes \widetilde{F^{\prime}}{ }_{2}+C_{g \widetilde{F}_{2}} \otimes \widetilde{F}_{2}+C_{g \widetilde{F}^{\prime \prime}} \otimes \widetilde{F^{\prime \prime}} \mathrm{L}+C_{g \widetilde{F}^{\prime} \mathrm{L}} \otimes \widetilde{F_{\mathrm{F}}^{\prime}}+C_{g \tilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right\}
\end{aligned}
$$

Notation:

$$
\begin{array}{r}
\tilde{F}_{2}\left(x, Q^{2}\right) \equiv \frac{F_{2}\left(x, Q^{2}\right)}{x}, \quad \tilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv \frac{2 \pi}{\alpha_{\mathrm{s}}\left(Q^{2}\right)} \frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{x}, \\
{\widetilde{F^{\prime}}}_{2, L}\left(x, Q^{2}\right) \equiv x \frac{\mathrm{~d}}{\mathrm{~d} x} \widetilde{F}_{2, L}\left(x, Q^{2}\right), \quad \widetilde{F}_{\mathrm{L}}\left(x, Q^{2}\right) \equiv x^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \widetilde{F}_{\mathrm{L}}\left(x, Q^{2}\right)
\end{array}
$$

Results for two observable basis
DGLAP equations of F_{2} and $F_{\mathrm{L}} / \alpha_{\mathrm{s}}$ in physical basis:

$$
\begin{aligned}
& \frac{\mathrm{d} F_{2}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{S}}\left(Q^{2}\right)}{2 \pi} \times\left\{2 P_{q g} \otimes\left[C_{g \widetilde{F}^{\prime \prime}} \otimes \widetilde{F}^{\prime \prime}{ }_{\mathrm{L}}+C_{g \widetilde{F}_{\mathrm{L}}} \otimes{\widetilde{F^{\prime}}}_{\mathrm{L}}+C_{g \widetilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right]\right. \\
& \left.+P_{q q} \otimes 1 \otimes \widetilde{F}_{2}+2 P_{q g} \otimes\left[C_{g \widetilde{F}_{2}^{\prime}} \otimes \widetilde{F}_{2}+C_{g \widetilde{F}_{2}} \otimes \widetilde{F}_{2}\right]\right\} \\
& \frac{\mathrm{d}}{\mathrm{~d} \log \left(Q^{2}\right)}\left(\frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi}}\right)= \\
& \frac{\alpha_{\mathrm{S}}\left(Q^{2}\right)}{2 \pi} \times\left\{\left[2 C_{F_{\mathrm{L}} \Sigma} \otimes P_{q g}+C_{F_{\mathrm{L}} g} \otimes P_{g g}\right] \otimes\left[C_{g \widetilde{F}^{\prime \prime}}{ }_{\mathrm{L}} \otimes{\widetilde{F^{\prime \prime}}}_{\mathrm{L}}+C_{g \widetilde{F}_{\mathrm{L}}} \otimes{\widetilde{F^{\prime}}}_{\mathrm{L}}+C_{g \widetilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right]\right. \\
& +\left[C_{F_{\mathrm{L}} \Sigma} \otimes\left(P_{q q} \otimes 1+2 P_{q g} \otimes C_{g} \tilde{F}_{2}\right)+C_{F_{\mathrm{L}} g} \otimes\left(n_{\mathrm{f}} P_{g q} \otimes 1+P_{g g} \otimes C_{g} \tilde{F}_{2}\right)\right] \otimes \widetilde{F}_{2} \\
& \left.+\left[2 C_{F_{\mathrm{L}} \Sigma} \otimes P_{q g}+C_{F_{\mathrm{L}} g} \otimes P_{g g}\right] \otimes C_{g \widetilde{F}_{2}} \otimes \widetilde{F^{\prime}}{ }_{2}\right\}
\end{aligned}
$$

Scheme dependence of PDFs only at next order in α_{s}
\longrightarrow Should agree with evolution in terms of PDFs

Comparison with conventional DGLAP evolution

Six observable basis

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s=\bar{s}$, and g
\longrightarrow Need six linearly independent DIS structure functions

Six observable basis

- Full three-flavor basis: $u, \bar{u}, d, \bar{d}, s=\bar{s}$, and g
\longrightarrow Need six linearly independent DIS structure functions
- We choose structure functions: (again in first non-zero order in α_{s})

Neutral current

$$
\begin{aligned}
F_{2}= & x \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2}(q+\bar{q}) \\
F_{3}= & 2 \sum_{q}^{n_{\mathrm{f}}}\left(L_{q}^{2}-R_{q}^{2}\right)(q-\bar{q}), \\
& \text { where } L_{q}=T_{q}^{3}-2 e_{q} \sin ^{2} \theta_{W} \\
& \text { and } R_{q}=-2 e_{q} \sin ^{2} \theta_{W} \\
\frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi}}= & x\left[C_{F_{\mathrm{L}} \tilde{F}_{2}} \otimes \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2}(q+\bar{q})\right. \\
+ & \left.\sum_{q}^{n_{\mathrm{f}}} e_{q}^{2} C_{F_{\mathrm{L}} g} \otimes g\right]
\end{aligned}
$$

Charged current

$$
\begin{aligned}
& F_{2}^{\mathrm{W}^{-}}=2 \times(u+\bar{d}+\bar{s}) \\
& F_{3}^{\mathrm{W}^{-}}=2(u-\bar{d}-\bar{s}) \\
& F_{2 \mathrm{c}}^{\mathrm{W}^{-}}=2 \times \bar{s}
\end{aligned}
$$

Derive DGLAP equations for these Again, should agree with conventional DGLAP evolution

Comparison with conventional DGLAP evolution

Summary

- Goal: formulate DGLAP evolution directly for physical observables
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis in first non-zero order in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis in first non-zero order in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- We have implemented these equations numerically - agree with DGLAP-evolved PDFs
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis in first non-zero order in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- We have implemented these equations numerically - agree with DGLAP-evolved PDFs
- Scheme dependence of PDFs starts to play part at NLO in α_{s} \longrightarrow By using a physical basis in second non-zero order in α_{s}, we will be able to avoid scheme dependence
- Goal: formulate DGLAP evolution directly for physical observables
- We have established physical basis in first non-zero order in α_{s} for six observables; $F_{2}, F_{\mathrm{L}}, F_{3}, F_{2}^{\mathrm{W}^{-}}, F_{3}^{\mathrm{W}^{-}}$, and $F_{2 \mathrm{c}}^{\mathrm{W}^{-}}$
- We have implemented these equations numerically - agree with DGLAP-evolved PDFs
- Scheme dependence of PDFs starts to play part at NLO in α_{s} \longrightarrow By using a physical basis in second non-zero order in α_{s}, we will be able to avoid scheme dependence
- What next:
- Establish physical basis at NLO
- Study how LHC cross sections, e.g. Drell-Yan, are expressed in physical basis
- Obtain physical basis including also heavy quarks

Backup: Inverting the gluon PDF

Gluon PDF in mellin space

$$
\begin{gathered}
g(n)=\frac{1}{n_{\mathrm{f}} C_{F_{\mathrm{L}} g}(n)}\left[\frac{1}{\left\langle e^{2}\right\rangle} \widetilde{F}_{\mathrm{L}}(n)-C_{F_{\mathrm{L}} \Sigma}(n) \Sigma(n)\right] \\
\frac{1}{C_{F_{\mathrm{L}} g}(n)}=\frac{1}{8 T_{\mathrm{R}} z_{0}^{n}} \int_{0}^{1} \mathrm{~d} z z^{n+2} \delta^{\prime \prime}\left(z-z_{0}\right),
\end{gathered}
$$

where $\left.z_{0} \in\right] 0,1[$ is an arbitrary constant that cancels in final result.

$$
\begin{aligned}
g\left(x, Q^{2}\right)= & \int_{x}^{1} \frac{\mathrm{~d} z}{z} \delta(1-z)\left\{\frac{C_{\mathrm{F}}}{4 T_{\mathrm{R}} n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left[\frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}-2\right] \frac{F_{2}\left(\frac{x}{2}, Q^{2}\right)}{\frac{x}{z}}\right. \\
& \left.+\frac{2 \pi}{\alpha_{\mathrm{s}}\left(Q^{2}\right)} \frac{1}{8 T_{\mathrm{R}} n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left[\frac{x^{2}}{z^{2}} \frac{\mathrm{~d}^{2}}{\mathrm{~d}\left(\frac{x}{z}\right)^{2}}-2 \frac{x}{z} \frac{\mathrm{~d}}{\mathrm{~d} \frac{x}{z}}+2\right] \frac{F_{\mathrm{L}}\left(\frac{x}{2}, Q^{2}\right)}{\frac{x}{z}}\right\} \\
\equiv & \frac{1}{n_{\mathrm{f}}\left\langle e^{2}\right\rangle}\left\{C_{g \widetilde{F}^{\prime} 2} \otimes \widetilde{F^{\prime}} 2_{2}+C_{g \widetilde{F}_{2}} \otimes \widetilde{F}_{2}+C_{g \widetilde{F}^{\prime \prime} \mathrm{L}} \otimes \widetilde{F^{\prime \prime}} \mathrm{L}+C_{g \widetilde{f}^{\prime} \mathrm{L}} \otimes \widetilde{F_{\mathrm{L}}^{\prime}}+C_{g \tilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right\}
\end{aligned}
$$

Backup: Comparison with MSTW2008 PDF set

DGLAP evolution for F_{2} and F_{L} in two observable physical basis

Backup: PDFs in six observable physical basis

$$
\left[\begin{array}{c}
F_{2} \\
F_{3} \\
F_{2}^{\mathrm{W}^{-}} \\
F_{3}^{\mathrm{W}^{-}} \\
F_{2 \mathrm{c}}^{\mathrm{W}}
\end{array}\right]=\left[\begin{array}{ccccc}
x e_{d}^{2} & x e_{d}^{2} & x e_{u}^{2} & x e_{u}^{2} & 2 x e_{s}^{2} \\
2 A_{d} & -2 A_{d} & 2 A_{u} & -2 A_{u} & 0 \\
0 & 2 x & 2 x & 0 & 2 x \\
0 & -2 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 & 2 x
\end{array}\right] \times\left[\begin{array}{c}
d \\
\bar{d} \\
u \\
\bar{u} \\
\bar{s}
\end{array}\right]
$$

where we have defined $A_{q} \equiv L_{q}^{2}-R_{q}^{2}$ in order to simplify equations.

$$
\begin{aligned}
x d\left(x, Q^{2}\right) & =\frac{1}{A_{u} e_{d}^{2}+A_{d} e_{u}^{2}}\left[A_{u} F_{2}\left(x, Q^{2}\right)+\frac{e_{u}^{2}}{2} x F_{3}\left(x, Q^{2}\right)-\frac{A_{u}\left(2 e_{u}^{2}+e_{d}^{2}\right)-A_{d} e_{u}^{2}}{4} F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)\right. \\
& \left.-\frac{A_{u}\left(2 e_{u}^{2}-e_{d}^{2}\right)+A_{d} e_{u}^{2}}{4} x F_{3}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)+\frac{A_{u}\left(e_{d}^{2}-2 e_{s}^{2}\right)-A_{d} e_{u}^{2}}{2} F_{2 \mathrm{c}}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)\right] \\
x \bar{d}\left(x, Q^{2}\right) & =\frac{1}{4} F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)-\frac{1}{4} x F_{3}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)-\frac{1}{2} F_{2 \mathrm{c}}^{\mathrm{W}^{-}} \\
x u\left(x, Q^{2}\right) & =\frac{1}{4} F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)+\frac{1}{4} x F_{3}^{\mathrm{W}^{-}}\left(x, Q^{2}\right) \\
x \bar{u}\left(x, Q^{2}\right) & =\frac{1}{A_{u} e_{d}^{2}+A_{d} e_{u}^{2}}\left[A_{d} F_{2}\left(x, Q^{2}\right)-\frac{e_{d}^{2}}{2} x F_{3}\left(x, Q^{2}\right)-\frac{A_{d}\left(2 e_{d}^{2}+e_{u}^{2}\right)-A_{u} e_{d}^{2}}{4} F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)\right. \\
& \left.+\frac{A_{d}\left(2 e_{d}^{2}-e_{u}^{2}\right)+A_{u} e_{d}^{2}}{4} x F_{3}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)+A_{d}\left(e_{d}^{2}-e_{s}^{2}\right) F_{2 \mathrm{c}}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)\right] \\
x \bar{s}\left(x, Q^{2}\right) & =x s\left(x, Q^{2}\right)=\frac{1}{2} F_{2 \mathrm{c}}^{\mathrm{W}}\left(x, Q^{2}\right)
\end{aligned}
$$

Backup: Results in six observable basis

$$
\begin{aligned}
& \frac{\mathrm{d} F_{2}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi}\left[P_{q q} \otimes \widetilde{F}_{2}+2 \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2} P_{q g} \otimes g\right], \quad \text { where } \widetilde{F}_{2}\left(x, Q^{2}\right) \equiv \frac{F_{2}\left(x, Q^{2}\right)}{x} \\
& \frac{\mathrm{~d} x F_{3}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} x P_{q q} \otimes F_{3} \\
& \frac{\mathrm{~d} F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} x\left[P_{q q} \otimes \widetilde{F}_{2}^{\mathrm{W}^{-}}+6 P_{q g} \otimes g\right], \quad \text { where } \widetilde{F}_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right) \equiv \frac{F_{2}^{\mathrm{W}^{-}}\left(x, Q^{2}\right)}{x} \\
& \frac{\mathrm{~d} x F_{3}^{\mathrm{W}}{ }^{-}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} x\left[P_{q q} \otimes F_{3}^{\mathrm{W}^{-}}-2 P_{q g} \otimes g\right] \\
& \frac{\mathrm{d} F_{2 \mathrm{c}}^{\mathrm{W}}\left(x, Q^{2}\right)}{\mathrm{d} \log \left(Q^{2}\right)}=\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} x\left[P_{q q} \otimes \widetilde{F}_{2 \mathrm{c}}^{\mathrm{W}^{-}}+2 P_{q g} \otimes g\right], \quad \text { where } \widetilde{F}_{2 \mathrm{c}}^{\mathrm{W}^{-}}\left(x, Q^{2}\right) \equiv \frac{F_{2 \mathrm{c}}^{\mathrm{W}}\left(x, Q^{2}\right)}{x} \\
& P_{q g} \otimes g=\frac{C_{F}}{4 \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2}}\left[-\widetilde{F}_{2}+2(z-1) \otimes \widetilde{F}_{2}\right]+\frac{1}{4 \sum_{q}^{n_{\mathrm{f}}} e_{q}^{2}}\left[\left(\frac{1}{x}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} x}\right) F_{\mathrm{L}}\left(x, Q^{2}\right)+1 \otimes \widetilde{F}_{\mathrm{L}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \log \left(Q^{2}\right)}\left(\frac{F_{\mathrm{L}}\left(x, Q^{2}\right)}{\frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi}}\right)= \\
& \frac{\alpha_{\mathrm{s}}\left(Q^{2}\right)}{2 \pi} \times\left\{\left[2 C_{F_{\mathrm{L}} \tilde{F}_{2}} \otimes P_{q g}+C_{F_{\mathrm{L}} g} \otimes P_{g g}\right] \otimes\left[C_{g \widetilde{F}^{\prime \prime} \mathrm{L}} \otimes \widetilde{F^{\prime \prime}}{ }_{\mathrm{L}}+C_{g \widetilde{F}^{\prime} \mathrm{L}} \otimes{\widetilde{F^{\prime}}}_{\mathrm{L}}+C_{g \tilde{F}_{\mathrm{L}}} \otimes \widetilde{F}_{\mathrm{L}}\right]\right. \\
& +\left[C_{F_{\mathrm{L}} \tilde{F}_{2}} \otimes\left(P_{q q}+2 P_{q g} \otimes C_{g \tilde{F}_{2}}\right)+C_{F_{\mathrm{L}} g} \otimes P_{g g} \otimes C_{g \tilde{F}_{2}}\right] \otimes \widetilde{F}_{2} \\
& \left.+\left[2 C_{F_{\mathrm{L}} \tilde{F}_{2}} \otimes P_{q g}+C_{F_{\mathrm{L}} g} \otimes P_{g g}\right] \otimes C_{g \widetilde{F^{\prime}} 2} \otimes \widetilde{F^{\prime}} 2+\sum_{q}^{n_{\mathrm{f}}} e_{q}^{2} C_{F_{\mathrm{L}} g} \otimes P_{g q} \otimes \sum_{q}(q+\bar{q})\right\}
\end{aligned}
$$

where $\sum_{q}(q+\bar{q})$ can be expressed in physical basis (see slide $11 / 9$)

Backup: Comparison with conventional DGLAP evolution

Comparison for structure functions $F_{3}^{\mathrm{W}^{-}}$and $F_{2 c}^{\mathrm{W}^{-}}$in six observable physical basis

