MSHT20: Updates

Lucian Harland-Lang, University College London

DIS 2023, MSU, 28 March 2023

In collaboration with Tom Cridge, Jamie McGowan and Robert Thorne

Outline

- The 'Post-Run I' set from the MSTW, MMHT... group: MSHT20.
- Focus on including significant amount of new data, higher precision theory and on methodological improvements.

See talk by T. Cridge

- More recent major update: extended to (approximate) N3LO order.
- Will discuss here on a selection of follow up studies, at both NNLO and aN3LO.
- Main Focus: analysis of jet and dijet data at NNLO and aN3LO.

Jets and Dijets in MSHT20

Jets for PDF fits

- Jet production a key ingredient in modern PDF fits.
- By pushing to larger jet p_{\perp} (dijet m_{jj}) go to larger x.
- Quark-initiated contribution tends to better constrained \rightarrow particularly relevant for gluon at high x.

- NNLO QCD (and NLO EW) theory available for both inclusive and dijet data.
- In addition, high precision LHC data available, spanning large range of kinematic space.

Jets in MSHT20

NNLO, $\chi^2/N_{\rm pt}$

Range of inclusive
 LHC jet dat fit:

• Fit quality acceptable. N.B. For ATLAS data smooth decorrelation of

systematic errors applied.

• PDF impact tied up with other high x gluon sensitive data....

MSHT20 updates: Jet data

• Focussing on Run-I data (i.e. current PDF fits):

$$d^2 \sigma / dp_{\perp} dy$$

 $0.0 < |y| < 2.5 - 3.0$

• Inclusive jets:

- ★ CMS 2.76 TeV: 81 points $-5.43 \text{ pb}^{-1} 74 < p_{\perp} < 592 \text{ GeV}$
- ★ CMS 7 TeV: 158 points -5.0 fb^{-1} $-74 < p_{\perp} < 2500 \text{ GeV}$
- ★ CMS 8 TeV: 174 points 19.7 fb⁻¹ $60 < p_{\perp} < 1300 \,\text{GeV}$
- * ATLAS 7 TeV: 140 points 4.5 fb⁻¹ $100 < p_{\perp} < 2000 \,\text{GeV}$
- * ATLAS 8 TeV: 171 points -20.2 fb^{-1} $-70 < p_{\perp} < 2500 \text{ GeV}$
- \rightarrow 724 points in total, v.s. ~ 4500 in global MSHT fit (inc.).
 - We take the larger of the jet radii available in both cases, i.e. R=0.6/0.7.

• Dijets:

* ATLAS 7 TeV: 90 points — 4.5 fb⁻¹ —
$$\frac{d^2 \sigma / dm_{jj} d|y_{\text{max}}|}{0.26 < m_{jj} < 5.04 \text{ TeV}}$$

* CMS 7 TeV: 54 points
$$-$$
 5.0 fb⁻¹ $-$
$$\frac{d^2\sigma/dm_{jj}d|y^*|}{0.25 < m_{jj} < 4.48 \text{ TeV}}$$

★ CMS 8 TeV: 122 points — 19.7 fb⁻¹
$$-\frac{d^3\sigma/dp_{\perp,avg}dy_bdy^*}{143 < p_{\perp,avg} < 1638 \text{ GeV}}$$

- \rightarrow 266 points in total, v.s. ~ 4000 in global MSHT fit (inc.).
- Again take the larger of the jet radii available in both cases, i.e. R=0.6/0.7.
- CMS 8 TeV data the only cases where this is triple differential. Only case where LO kinematics specified \Rightarrow higher impact (backup).

Fit Quality

• Consider impact of both inclusive or dijet data at NNLO and aN3LO in the MSHT20 fit.

Jet fit:

	$N_{ m pts}$	NNLO	aN^3LO
ATLAS 7 TeV jets	140	1.54	1.46
CMS 7 TeV jets	158	1.29	1.32
ATLAS 8 TeV jets	171	1.96	1.90
CMS 8 TeV jets	174	1.83	1.80
Total Jets	643	1.67	1.63

NB: smooth decorrelation of systematics applied for ATLAS inclusive jet data.

 $\chi^2/N_{
m pts}$

Dij	~4	£4.
	œL	

	$N_{ m pts}$	NNLO	aN^3LO
ATLAS 7 TeV dijets	90	1.06	1.12
CMS 7 TeV dijets	54	1.43	1.39
CMS 8 TeV dijets	122	1.05	0.82
Total Dijets	266	1.13	1.04

- **\star** NNLO: Fit quality to dijet data very good (1.13), clearly worse for jets (1.67).
- ★ aN3LO: Some improvement in both cases (1.13, 1.63 for jets, dijets) but inclusive jet remains a rather bad fit!

What about interplay with other gluon sensitive data?

Jet fit:

D			4
		1111	⊢ ●
Di	ICL	ш	

	$N_{ m pts}$	NNLO	aN^3LO
ATLAS Z p_{\perp}	104	1.89	1.03
Diff. top	54	1.10	1.06
7 + 8 TeV dijets	266	[1.30]	[1.10]
7 + 8 TeV jets	643	1.67	1.63

	$N_{ m pts}$	NNLO	aN^3LO
ATLAS $Z p_{\perp}$	104	1.66	1.05
Diff. top	54	1.26	1.09
7 + 8 TeV jets	643	[1.75]	[1.65]
7 + 8 TeV dijets	266	1.13	1.04

- ★ Jet data: no signs of significant inconsistency in fit vs. prediction though some difference in pull implied.
- ***** NNLO: Fit quality to top $(Z p_{\perp})$ data better in jet (dijet) fit. Latter particularly notable \Rightarrow overall tension less in dijet fit.
- ★ aN3LO: tensions reduced in all cases. No clear difference between jet/dijets.
- ★ (Not shown) fit quality to other data in global fit v. similar.

With some preference for aN3LO

Impact of EW corrections

Jet fit: $\chi^2 \text{ (no EW)} \rightarrow \chi^2 \text{ (EW)} : 1.57 \rightarrow 1.67$

aN3LO: $\chi^2 \text{ (no EW)} \to \chi^2 \text{ (EW)}: 1.59 \to 1.63$

Dijet fit: NNLO: $\chi^2 \text{ (no EW)} \rightarrow \chi^2 \text{ (EW)} : 1.37 \rightarrow 1.13$

aN3LO: $\chi^2 \text{ (no EW)} \to \chi^2 \text{ (EW)} : 1.27 \to 1.04$

★ Significant improvement in dijet fit upon including EW corrections.

However trend is opposite for inclusive jets (!). Given these are there:

indeed even absent EW correction dijet fit quality is better.

★ Remains true at aN3LO. Deterioration in fit quality for no EW fit somewhat improved but not entirely ⇒ not true that freedom in aN3LO K-factors can (fully) absorb other theoretical deficiencies.

Inclusive Jets: scale choice

J. Currie et al., *JHEP* 10 (2018) 155

- Default inclusive fits taken with $\mu=p_{\perp}^{\jmath}$ scale choice. However some indication that $\mu=\hat{H}_{\perp}$ may be preferable. $\hat{H}_{\perp}=\sum p_{i\perp}$
- What does global fit say?

NLO:
$$\chi^2(p^j_{\perp}) \to \chi^2(\hat{H}_{\perp}) : 1.68 \to 1.60$$

NNLO:
$$\chi^2(p_{\perp}^j) \to \chi^2(\hat{H}_{\perp}): 1.64 \to 1.65$$

anslo:
$$\chi^2(p^j_{\perp}) \to \chi^2(\hat{H}_{\perp}): 1.58 \to 1.60$$

- * NLO fit quality better with $\mu = \hat{H}_{\perp}$ but difference marginal at NNLO/aN3LO.
- * Trend for improved description with order not present with $\mu=H_{\perp}$.
- → Scale choice does not appear to play significant role at NNLO and beyond.

Taking step back: pQCD working?

• Worth taking a look at NLO fit quality...

Jets fit:

	$N_{ m pts}$	NLO	NNLO	aN^3LO
ATLAS 7 TeV jets	140	1.61	1.54	1.46
CMS 7 TeV jets	158	1.37	1.29	1.32
ATLAS 8 TeV jets	171	2.24	1.96	1.90
CMS 8 TeV jets	174	1.66	1.83	1.80
Total Jets	643	1.73	1.67	1.63

Dijets fit:

	$N_{ m pts}$	NLO	NNLO	aN^3LO
ATLAS 7 TeV dijets	90	1.12	1.06	1.12
CMS 7 TeV dijets	54	1.70	1.43	1.39
CMS 8 TeV dijets	122	5.27	1.05	0.82
Total Dijets	266	3.14	1.13	1.04

Not a typo!

- ★ Clear trend in both cases for QCD corrections to improve fit quality. pQCD working as it should!
- ★ Improvement in CMS 8 TeV dijets particularly remarkable. Clear need for NNLO QCD at high precision + multi-differential LHC. In more detail...
 See also: ATLAS high

precision W,Z

• No clear, by eye, trend for better description at NNLO, aN3LO.

• However this is **before** shifting by correlated systematics.

- Impact on shape of distributions in 3D kinematic space and interplay with correlated systematics drives this.
- However some clue from looking at K-factors:

- ★ NNLO corrections reasonable large, in particular in some regions of phase space.
- ★ Also shown are the aN3LO K-factors preferred by the fit: nice trend for perturbative stability, in line with lower orders.
- ★ Similar stability in inclusive jet case (backup).

PDFs: dijets vs. Jets

 \boldsymbol{x}

- ★ Focus on gluon: largest expected impact.
- ★ Overall consistency between two cases...

- ★ But some difference in pull observed between jets/dijets at NNLO.
- ★ At aN3LO pulls rather similar.

★ Clear reduction in uncertainty in both cases and at both orders.

- ★ Marginally more significant for dijets.
- ★ Slightly less significant at aN3LO.

Consistency within datasets

- At higher x clear difference between pulls of ATLAS and CMS (also seen in MSHT20).
- Final result compromise between these.

- Consistency between CMS and ATLAS, but latter has very little impact alone.
- Again CMS 8 TeV driving fit.
- Again similar story at NNLO (not shown).

Technical aside (1) - K-factors

- NNLO QCD corrections included via K-factors. MC uncertainties on these not negligible.
- We argue better to fit these to smooth functions. Can impact on fit quality at the ~ 0.1 -0.2 per point level, though PDFs very stable.
- Provides cleaner idea of improvements from NLO to NNLO etc. Find that interpretation can be washed out somewhat otherwise.

Technical aside (2) - CMS 8 dijets

- Systematic uncertainties related to jet calibration correlated across kinematic (rapidity/ p_{\perp}) space. Shape of these indicates anti-correlation between certain regions. However hepdata entries entirely positive.
- Through discussion with CMS colleagues have changed sign to more 'natural' (anti)-correlation.
- In the end this makes very little difference: improves χ^2 by $\sim 1\text{-}2$ points and gluon very stable. But more by chance than design.
- Detailed understanding/bookkeeping of systematic correlations key.

ATLAS Zp_{\perp} data: a closer look

• ATLAS $Z\,p_\perp$ (more properly dilepton p_\perp) data presented double differentially in m_{ll},p_\perp^{ll}

$$12 < m_{ll} < 150 \,\mathrm{GeV}$$
 $p_{\perp}^{ll} > 30 \,\mathrm{GeV}$

- Treatment of this dataset rather different between groups.
- Fit quality v. poor in default NNLO fit, with dramatic improvement at aN3LO (1.86 vs. 1.04), and highly sensitive to other data in fit (jets vs. dijets).

• Reduced tension at aN3LO also backed up by L2 sensitivities (reduced scale).

- → Worth revisiting, and considering impact of data selection/ treatment.
- First step: consider impact of raising p_{\perp}^{ll} cut.

า		_
γ^2	N	
λ	/ _ \	pts

Order of fit/ p_T^{cut} (GeV)	30 (default)	45	55	65	75	85	105
NNLO	1.86	1.68	1.67	1.42	1.39	1.42	1.21
aN3LO	1.04	0.95	1.01	0.84	0.86	0.87	0.81
N _{pts}	104	88	77	66	55	44	33

- Fit quality improves slowly as amount of data is reduced.
- Effect larger at NNLO, but NNLO always worse.

- No obvious sign of issue with particular p_{\perp}^{ll} region.
- Next steps: impact of m_{ll} selection, interplay with other datasets...

Impact of SeaQuest data

Preliminary!

New data - Seaquest (NNLO)

- Seaquest (E906) fixed target DY data sensitivity to high x q, \bar{q} : $\Rightarrow \sigma_D/\sigma_H \sim 1 + \bar{d}/\bar{u}$. Direct measurement of \bar{d}/\bar{u} at high x.
- Various models for \bar{d}/\bar{u} at high x: Pauli blocking, pion cloud, etc.
- Previous questions of NuSea (E866) data preferring $\bar{d} < \bar{u}$ at $x \approx 0.4$.
- Clearly raises high $x \, \bar{d}/\bar{u}$. Tension with NuSea which pulls it down.

Dataset	$N_{ m pts}$	MSHT20	New
Seaquest	6	-	8.2
NuSea	15	9.8	19.0
Total (without	4348	5102.3	5112.1
Seaquest or NuSea)	4340	5102.5	5112.1

• NuSea $\chi^2/N_{\rm pts}$: 0.65 \to 1.27, when Seaquest added.

• Rest of data also worsens in χ^2 by 9 points, with 4.5 in E866 absolute DY (rather than ratio), 4.4 in NMC n/p, 4.3 in DØ W asymmetry.

- At aN3LO, the \bar{d} become negative above $x \sim 0.5$ with a minimum at $x \sim 0.6$. Nonetheless remains positive within uncertainties.
- Like at NNLO, adding the Seaquest data raises the \bar{d}/\bar{u} .
- Adding Seaquest \Rightarrow NNLO and aN3LO \bar{d} , \bar{u} again very similar.
- Effect on fit quality of adding Seaquest similar to NNLO, $\Delta\chi^2=+6$ in rest of data, NuSea χ^2/N doubles from \sim 0.6 to \sim 1.3.

Summary

- ★MSHT group busy working on range of follow up studies, making use of NNLO and new aN3LO machinery.
- ★ Jets/Dijets:
 - Jet fit quality relatively poor, remains so in aN3LO fit.
 - Dijet fit quality good, and with improvement at aN3LO in line with expectations.
 - Scale choice does not play big role in inclusive, EW corrections make fit quality worse (!).
- ★ All indicates that dijet data may be preferable.
- *Working ongoing to understand these questions, and connected ones related to high x ($Z p_{\perp}$, Seaquest) at NNLO and aN3LO.

Thank you for listening!

Backup

Inclusive Jet K-factors

Jet Kinematics: Inclusive

- Inclusive jets measured in terms of jet p_{\perp} and y_j .
- Schematically, LO relationship to high x parton:

$$x = \frac{p_{\perp}}{\sqrt{s}} \left(e^{y_j} + e^{y_{j'}} \right)$$
 Observed Jet $j \ (y_j > 0)$ 'Unobserved' Jet j'

- \rightarrow Need 3 kinematic inputs to uniquely determine x.
- Inclusive jets: effectively integrate over $x \gtrsim \frac{p_{\perp}}{\sqrt{s}} e^{y_{j}}$.
- So certainly sensitive to high x region, but washed out somewhat.

Jet Kinematics: Dijets

• For dijets, both jets measured. Same schematic LO relationship:

$$x_{1,2} = \frac{p_{\perp}}{\sqrt{s}} \left(e^{\pm y_j} + e^{\pm y_{j'}} \right)$$

- Double differential measurements in terms of m_{jj} and $y^*/y_{\rm max}$: not sufficient to uniquely pin down LO x.
- That is, some washing out (though precise effect depends on choice of variable).
- However, also possible to measure triple differentially expect to provide stronger, more direct constraints. $\frac{\mathrm{d}^3 \sigma/\mathrm{d}p_{\perp,avq}\mathrm{d}y_b\mathrm{d}y^*}{\mathrm{d}^3 \sigma/\mathrm{d}p_{\perp,avq}\mathrm{d}y_b\mathrm{d}y^*}$

Consistency within datasets

 \boldsymbol{x}

- 7 & 8 TeV data ~ consistent pulls inclusive jets.
- Similar for NNLO (not shown).

- 7 & 8 TeV data consistent for dijets, but this is due to broader result.
- All dijet fits completely driven by CMS 8 TeV data
- Similar for NNLO (not shown).

PDFs: EW corrections/scale choice

*Impact of these on gluon small, though not completely negligible.

