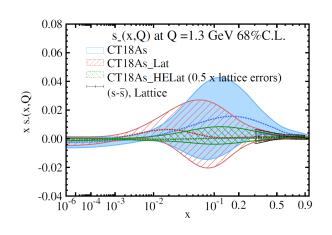
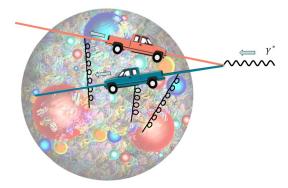
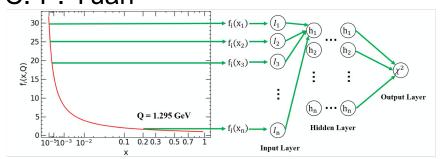
Update from CTEQ-TEA

Pavel Nadolsky

Southern Methodist University, USA

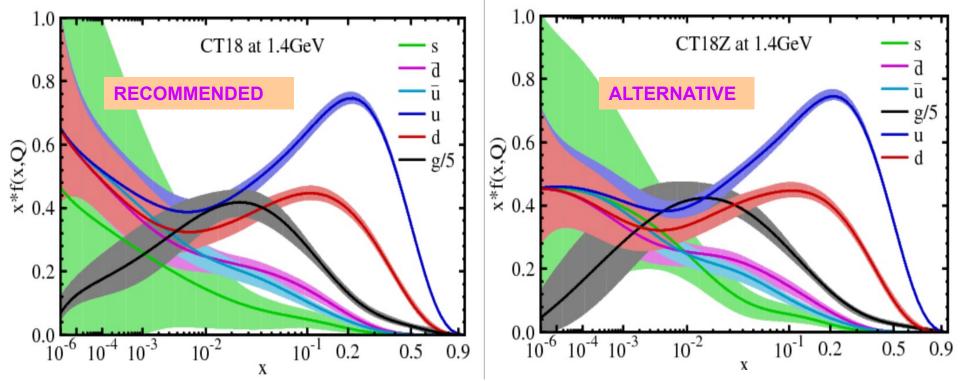

With CTEQ-TEA (Tung Et. Al.) working group


China: A. Ablat, S. Dulat, J. Gao, T.-J. Hou, I. Sitiwaldi, M. Yan, and collaborators Mexico: A. Courtoy


USA: T.J. Hobbs, M. Guzzi, X. Jing,

J. Huston, H.-W. Lin, D. Stump, C. Schmidt, K. Xie, C.-P. Yuan

CTEQ-TEA presentations at DIS'2023


Toward a new generation of CT202X PDFs

1.Impact of Drell-Yan data on post-CT18 global fits	Keping Xie	WG3
2. Constraints from $t\bar{t}$ production at LHC 13 TeV	larco Guzzi	WG1
3. Epistemic uncertainty quantification in PDF fits	P. Nadolsky	WG1
4. CT18 NNLO fitted charm PDFs [arXiv:2211.01387]	Tim Hobbs	WG1
5. Prospects for using lattice-QCD constraints in the global PDF analysis	TJ. Hou	Plenary
6. CTEQ-TEA NNLO predictions for high-energy neutrino cross sections	Dan Stump	WG3
7. Simultaneous CTEQ-TEA extraction of PDFs and SMEFT contributions	Tim Hobbs	WG3
8. Small-x dynamics in CTEQ-TEA fits and Forward Physics Facility	Keping Xie	WG2

CT18 parton distributions

PRD 103 (2021) 014013

Four PDF ensembles: CT18 (default), A, X, and Z

New CT18 NNLO grids for precision calculations

- Soon to appear in the LHAPDF library
- Contain more x and Q points improved interpolation at the expense of slightly slower evaluation
- Crossing of quark mass thresholds implemented with multiple *Q* grids
- Complement the published (less dense) CT18 grids that remain sufficient for most applications

Toward a new generation of CT202X PDFs

- **1. Identify sensitive, mutually consistent new experimental data sets** using preliminary fits and fast techniques (L_2 sensitivities and ePump)
- 2. Implement N3LO QCD and NLO EW contributions as they become available. N3LO accuracy is reached only when N3LO terms are **fully** implemented.
- Meanwhile, "NNLO+" PDFs: e.g., include theoretical uncertainty due to QCD scale dependence for key processes as has been done in CT18/CT18X NNLO PDFs
- 4. Explore quark sea flavor dependence: $s \bar{s}$ (CT18As), fitted charm (CT18FC),...
- 5. Include lattice QCD constraints (CT18As_Lat)
- 6. Next-generation PDF uncertainty quantification: META PDFs, Bézier curves, MC sampling, ML stress-testing, multi-Gaussian approaches, ...

Impact of LHC 13 TeV $t\bar{t}$ production on CT2X PDFs

M. Guzzi, WG1

1D $t\bar{t}$ absolute distributions, NNLO QCD with different scale choices

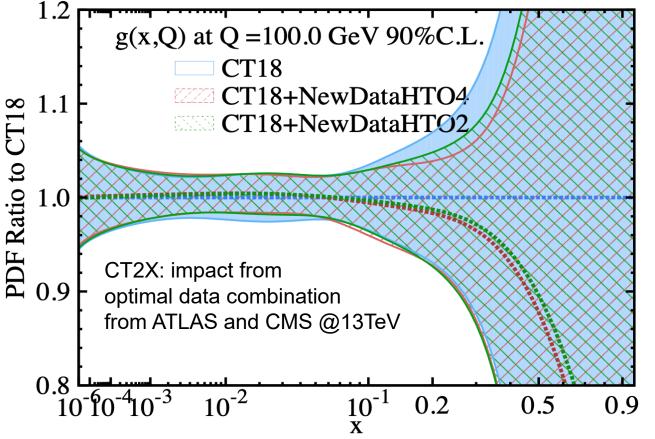
		ePump updated Chi2/Npt			Global fit Chi2/	Global fit Chi2/Npt			
Exp	Obs	Npt	HT	HT/2	HT/4	HT/2	/Npt HT/4	HT/2	HT/4
	mtt	9	1.749	1.574	1.601	1.532026	1.4691		
	HTtt	11	1.982	1.769	1.585	1.499361	1.74098		
ATLAS_hadron Channel	ytt	12	1.279	1.15	0.938	1.051071	1.07351		
_	pTt1	10	1.301	1.185	1.118	1.196207	1.33326		
	pTt2	8	1.132	0.843	1.047	0.84058	1.59056		
	mtt	7	3.457	3.068	3.142	3.121005	3.22675		
CMS_Dilep	ytt	10	1.66	0.969	0.679	0.938607	0.67252		
	pTt	6	3.598	3.701	3.679	3.558017	3.04841		
	yt	10	1.334	0.944	0.867	1.002635	0.68848		
	mtt	7	2.395	1.165	0.681	0.826805	0.65684		
pft 0 5.598 3.701 3.679 (3.579) (3.58017) yt 10 1.334 0.944 0.867 (1.002635) Mtt 7 2.395 1.165 0.681 (0.826805) ATLAS_LepJ CMS Bin 9tt 10 0.909 0.69 0.621 (0.740418) yt 10 1.298 1.073 1.095 (1.161363)	ytt	10	0.909	0.69	0.621	0.740418	0.74866		
	1.43062								
	yt	10	1.298	1.073	1.095	1.161363	0.68198		
CMS_LepJ 137	mtt	15	1.485	1.383	1.808	1.203901	1.66676		
	ytt	10	6.469	6.238	6.424	6.005668	5.87508		
						NoStatCorrelation		WithStatCorrelation	
ATLAS_LepJ ATLAS Bin NoStatCorrelation	mtt	9	1.551	1.123	0.94	1.27	0.92206	1.287	0.963
	ytt	7	0.911	0.739	0.8	0.756	0.8975	0.751	0.921
	yB	9	1.396	1.267	1.532	0.8498	0.93335	0.858	0.992
	HTtt	9	1.352	0.909	0.933	0.805	0.80475	0.855	0.857
	mttyttybHttt	34	1.867	1.28	1.457	0.933	1.06487	1.585	1.322

CT2X = CT18 + new optimal combination of top-quark pair production @LHC13 TeV from:

- ATLAS all hadronic, JHEP 01 (2021) 033, arXiv:2006.09274
- ATLAS lepton + jets, EPJC 79 (2019) 1028, arXiv:1908.07305
- CMS dilepton, JHEP 1902 (2019) 149, arXiv:1811.06625
- CMS lepton + jets, PRD 104 092013 (2021), arXiv:2108.02803

Correlated Systematic Uncertainties:

ATLAS -> nuisance parameters


CMS -> Covariance matrix representation (converted to nuisance param.)

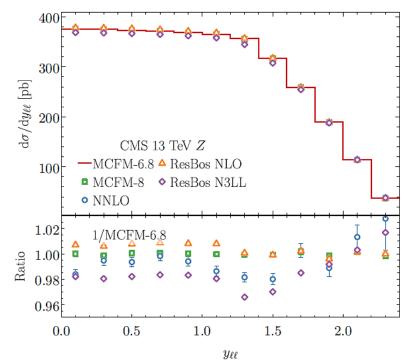
When statistical correlations not provided

data added one at a time on top of the CT18 baseline

Scale choices in $t\bar{t}$ CT2X global analysis

Theory predictions:

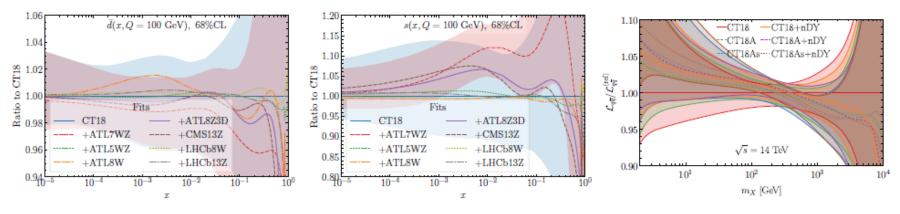
- MATRIX (Catani, Grazzini et al. PRD 2019)
- FastNNLO (Czakon, et al. 1704.08551)

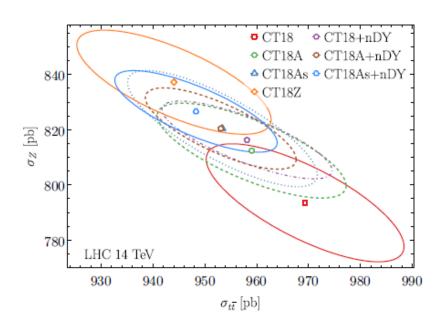

Blue band: CT18NNLO 90% C.L. Hatched: CT18 + $t\bar{t}$ data Green: $\mu_R = \mu_F = H_T/2$ Red: $\mu_R = \mu_F = H_T/4$

The scales giving the lowest χ^2 depend on the PDF set

Differences related to different scale choices are well within the CT18 PDF error band.

New post-CT18 LHC Drell-Yan data

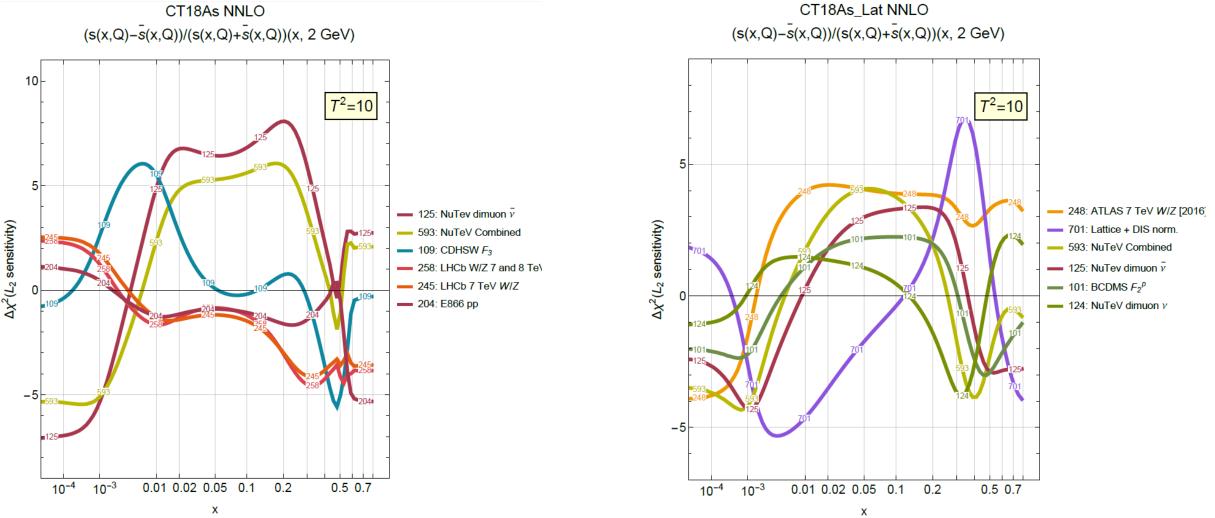

K. Xie, WG3



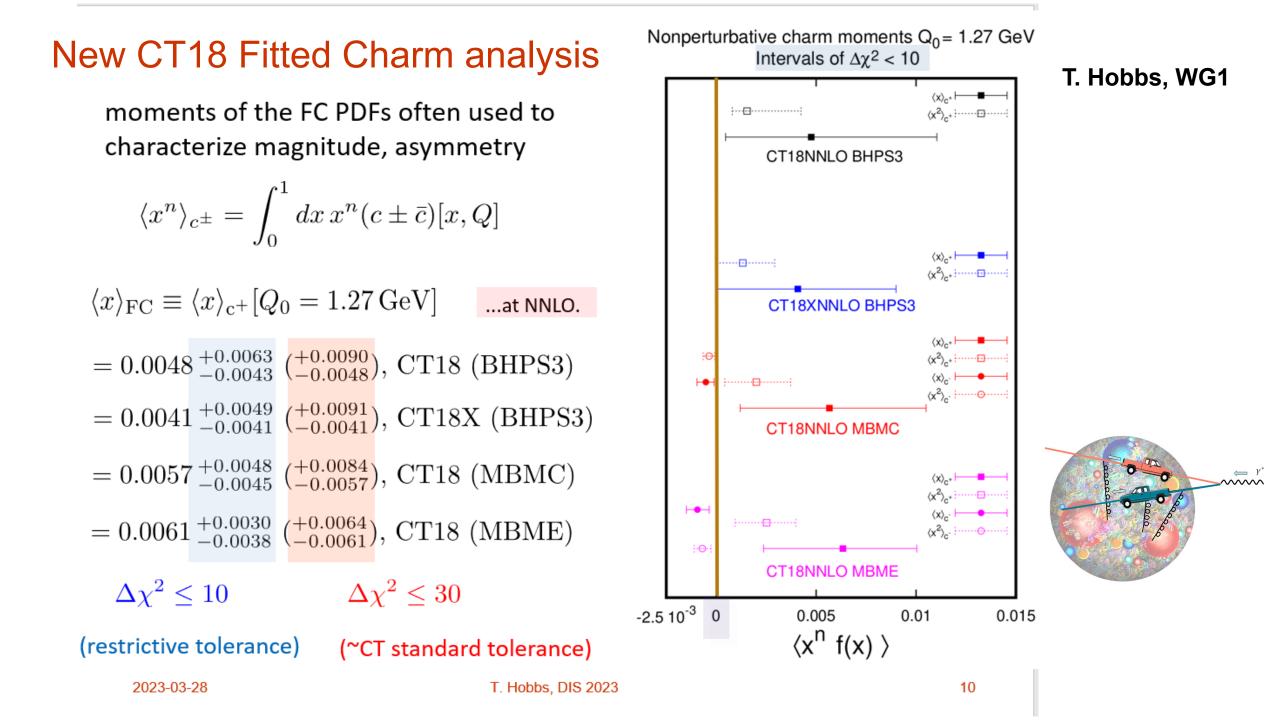
Boson	\sqrt{s}	Lumi	Observable	Ref.				
ATLAS								
W, Z	2.76	4.0 pb^{-1}	$\sigma^{ m fid,tot}$	1907.03567				
W, Z	13	81.0 pb ⁻¹	$\sigma^{ m fid}$	1603.09222				
W, Z	5.02	25.0 pb ⁻¹	$(oldsymbol{\eta}_\ell,y_{\ell\ell})$	1810.08424				
Z	8	$20.2 { m ~fb}^{-1}$	$(m_{\ell\ell},y_{\ell\ell})$	1710.05167				
$W \rightarrow \mu \nu$	8	$20.2 \ {\rm fb}^{-1}$	η_{μ}	1904.05631				
Z	13	$36.1 { m ~fb^{-1}}$	$p_T^{\ell\ell}$	1912.02844				
	CMS							
Z	13	$2.8 { m ~fb^{-1}}$	$m_{\ell\ell}$	1812.10529				
Z	13	35.9 fb ⁻¹	(y, p_T, ϕ^*)	1909.04133				
W	13	35.9 fb ⁻¹	$\sigma^{ ext{fid}}$, $y_W, (oldsymbol{\eta}_\ell, p_T^\ell)$	2008.04174				
LHCb								
$W \to e \mathbf{v}$	8	$2.0 { m ~fb^{-1}}$	η_e	1608.01484				
Z	13	294 pb^{-1}	$\sigma^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*)$	1607.06495				
$Z \rightarrow \mu \mu$	13	$5.1 { m ~fb^{-1}}$	$oldsymbol{\sigma}^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*)$	2112.07458				

We mainly focus on (pseudo)rapidity distributions in this work.

Post-CT18 LHC Drell-Yan data [See K. Xie's talk for the details.]

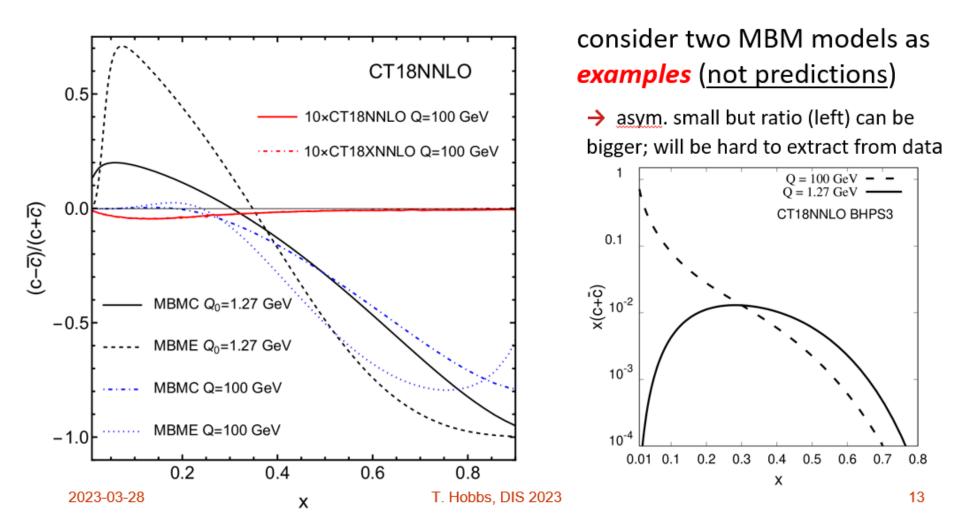


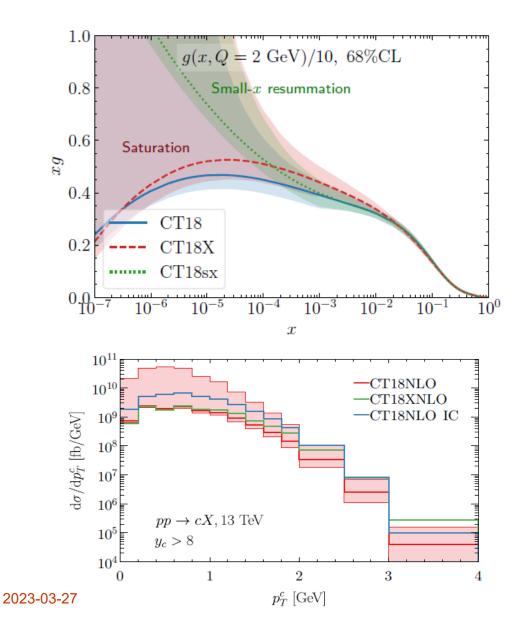
- Most of the post-CT18 LHC Drell-Yan data are consistent with the ATLAS 7 TeV W, Z precision measurement, which enhance the strangeness (CT18A).
- Exceptions for ATLAS and LHCb 8 TeV W data, which push the $d(\bar{d})$ PDFs to the opposite direction.
- The post-CT18 LHC Drell-Yan data shrink the error bands.
- The joint impact of these new data sets pull the PDFs and predictions from CT18 to CT18Z direction.

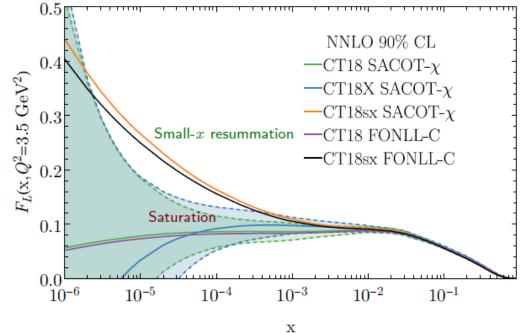

CT18As_Lat NNLO: Strangeness asymmetry with a 0.03 Iattice QCD constraint

CT18As_Lat T.-J. Hou et al., arXiv: 2211.11064 ZZ MSHT20 0.02 NNPDF4.0 **CT18As:** CT18A with $s_{-} \equiv s - \bar{s} \neq 0$ (O,x)*s(x,Q) CT18As_Lat: CT18As with a lattice constraint on $s_{x}(x)$ at $0.3 \le x \le 0.8$. 0.00 s(x,Q) at Q = 2.0 GeV 68%C.L. $s_{-}(x)dx = 0$ -0.01 0.2 10^{-1} 0.5 0.9 Х 0.08 $s_{x,Q}$ at Q = 2.0 GeV 68%C.L. 0.03 0.06 CT18As Lat CT18As_Lat MSHT20 MSHT20 0.02 0.04 NNPDF4.0 NNPDF4.0 $x^*s_(x,Q)$ $(O, x)^{s_{1}} = 0.01$ 0.02 0.00 Bergerus ber ben ben ber 0.00 -0.02 $\bar{s}(x,Q)$ at Q = 2.0 GeV 68%C.L. -0.01 -0.04 10^{-1} 0.2 0.5 0.9 $10^{-6}1$ 10^{-2} 10^{-1} $610^{-4}10^{-3}$ 0.2 0.5 0.9 Х Х

Sensitivity of experiments to the strangeness asymmetry


Preference for $s - \bar{s} \neq 0$ at x > 0.1 emerges from competing χ^2 pulls of NuTeV dimuon, LHCb W/Z, BCDMS and E866 fixed-target cross sections. We estimated it using the L_2 sensitivity fast technique [*T. Hobbs et al., arXiv:1904.00022*]. The lattice prediction by *R. Zhang et al., 2005.01124* is consistent with $s - \bar{s} = 0$ at x > 0.3.


possible charm-anticharm asymmetries


pQCD only very weakly breaks $c = \overline{c}$ through HO corrections

- → large(r) charm asymmetry would signal nonpert dynamics, IC
- \rightarrow MBM breaks $c = \bar{c}$ through hadronic interactions

Small-*x* dynamics in CTEQ-TEA PDFs

- Both the BFKL resummation (CT18sx) and saturation (CT18X) models improve the description of HERA DIS data, which enhances gluon PDF at small x and low Q^2 .
- F_L at $x \to 0$ is enhanced (stays \approx constant) with resummation (saturation) models.
- Forward charm production at CERN FPF gets large uncertainty from small-*x* dynamics.

P. Nadolsky, DIS 2023 workshop

CT18 NNLO high-energy neutrino DIS cross sections from 10² to 10⁷ GeV

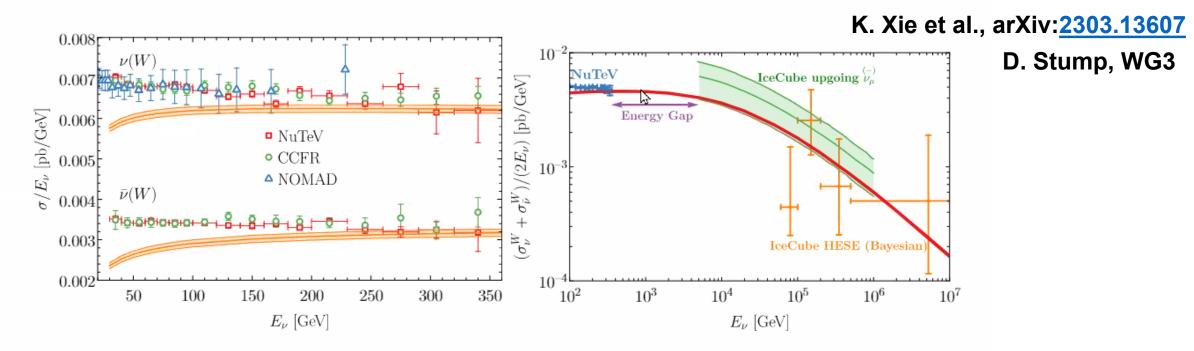
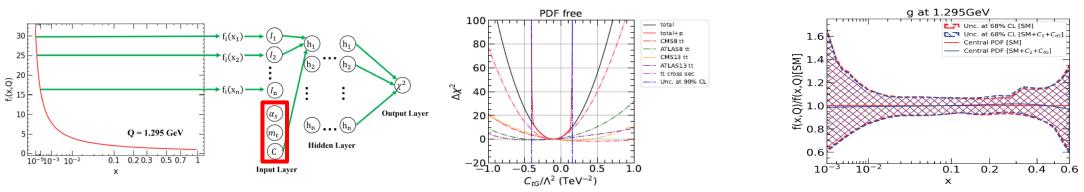


FIG. 20. Left: The CT18 predictions for the neutrino-isoscalar charged-current cross sections divided by the (anti)neutrino energy, σ/E_{ν} , in comparison with data measured at accelerator-based experiments [88–90]. Right: The CT18 prediction of the averaged neutrino-isoscalar charged-current cross sections divided by neutrino energy in the energy gap (360 GeV $\leq E_{\nu} \leq 6$ TeV), which can be measured by the FASER and other FPFs at the LHC [15, 16]. We included cross sections below 360 GeV measured by NuTeV [88] and above 6.3 (60) TeV by IceCube upgoing $\binom{(-)}{\nu_{\mu}}$ [9] (HESE Bayesian [10]) analyzes.

2023-03-27

CTEQ-TEA global analysis of SMEFT

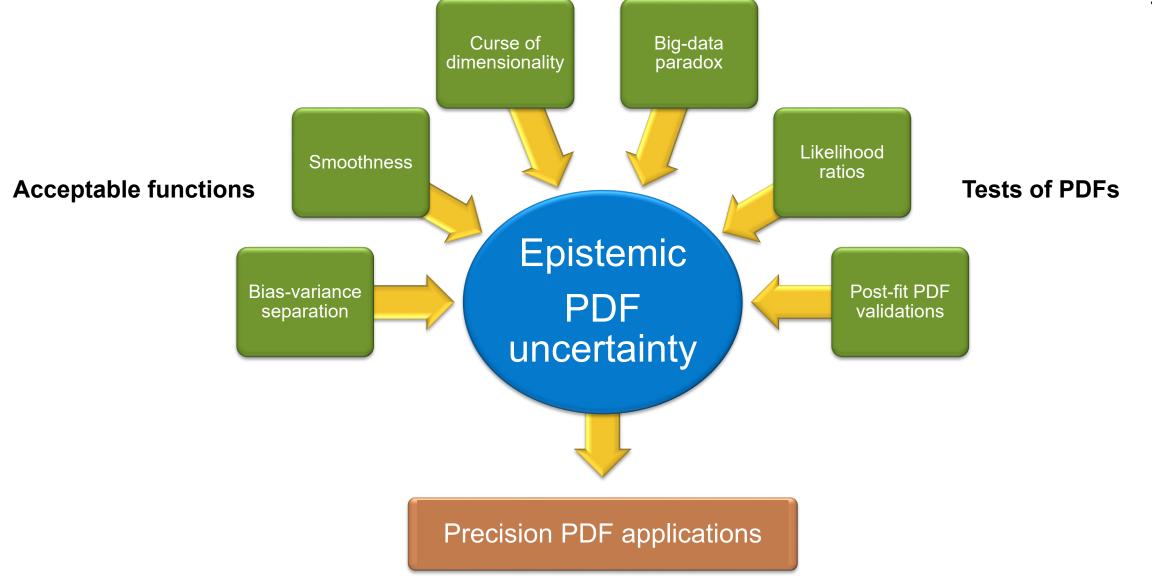
T. Hobbs, WG3


[J. Gao, MS Gao, T. Hobbs, DY Liu, XM Shen, 2211.01094]

In search for new physics at hadron colliders, one key problem is of the degeneracy of PDF variations and the new physics contributions.
 Described in the framework of SMEFT
 Joint fits of PDFs and BSM parameters

• We focus on several operators relevant for top-quark pair $(O_{tu}^1, O_{td}^1, O_{tG}, O_{tq}^8)$ and jet production (O_1) at hadron colliders. 2 3

$$\mathcal{D}_{tu}^{1} = \sum_{i=1}^{2} (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}), \qquad \mathcal{O}_{td}^{1} = \sum_{i=1}^{3} (\bar{t}^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i}), \qquad \mathcal{O}_{1} = 2\pi (\sum_{i=1}^{3} \bar{q}_{Li}\gamma_{\mu}q_{Li})(\sum_{j=1}^{3} \bar{q}_{Lj}\gamma^{\mu}q_{Lj}) \\
 \mathcal{O}_{tG} = ig_{s}(\bar{Q}_{L,3}\tau^{\mu\nu}T^{A}t)\tilde{\varphi}G_{\mu\nu}^{A} + \text{h.c.}, \qquad \mathcal{O}_{tq}^{8} = \sum_{i=1}^{2} (\bar{Q}_{i}\gamma_{\mu}T^{A}Q_{i})(\bar{t}\gamma^{\mu}T^{A}t)$$


• We obtain self-consistent constraints on SMEFT with Lagrange Multiplier scans based on a Neural Network approach.

• We find mild correlations between the SMEFT Wilson coefficients, PDFs (e.g. the high-x gluon), and other QCD parameters.

Representative sampling

Epistemic PDF uncertainty is important in W boson mass and α_s measurements

ATLAS-CONF-2023-004

PDF-Set	p_{T}^{ℓ} [MeV]	m _T [MeV]	combined [MeV]
CT10	80355.6+15.8	$80378.1^{+24.4}_{-24.8}$	80355.8 ^{+15.7} -15.7
CT14	$80358.0^{+16.3}_{-16.3}$	$80388.8^{+25.2}_{-25.5}$	80358.4 ^{+16.3} -16.3
CT18	$80360.1^{+16.3}_{-16.3}$	$80382.2^{+25.3}_{-25.3}$	$80360.4^{+16.3}_{-16.3}$
MMHT2014	$80360.3^{+15.9}_{-15.9}$	$80386.2^{+23.9}_{-24.4}$	80361.0 ^{+15.9} -15.9
MSHT20	$80358.9^{+13.0}_{-16.3}$	$80379.4^{+24.6}_{-25.1}$	80356.3 ^{+14.6}
NNPDF3.1	$80344.7^{+15.6}_{-15.5}$	$80354.3^{+23.6}_{-23.7}$	80345.0 ^{+15.5} _15.5
NNPDF4.0	80342.2+15.3	80354.3 ^{+22.3} -22.4	80342.9+15.3

Table 2: Overview of fitted values of the *W* boson mass for different PDF sets. The reported uncertainties are the total uncertainties.

ATLAS-CONF-2023-015

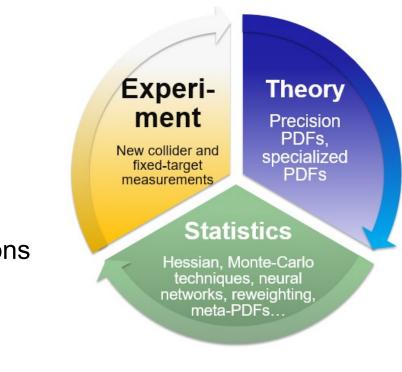
The statistical analysis for the determination of $\alpha_s(m_Z)$ is performed with the xFitter framework [60]. The value of $\alpha_s(m_Z)$ is determined by minimising a χ^2 function which includes both the experimental uncertainties and the theoretical uncertainties arising from PDF variations:

$$\chi^{2}(\beta_{\exp},\beta_{th}) = \sum_{i=1}^{N_{data}} \frac{\left(\sigma_{i}^{\exp} + \sum_{j} \Gamma_{ij}^{\exp} \beta_{j,\exp} - \sigma_{i}^{th} - \sum_{k} \Gamma_{ik}^{th} \beta_{k,th}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j,\exp}^{2} + \sum_{k} \beta_{k,th}^{2}.$$
(1)

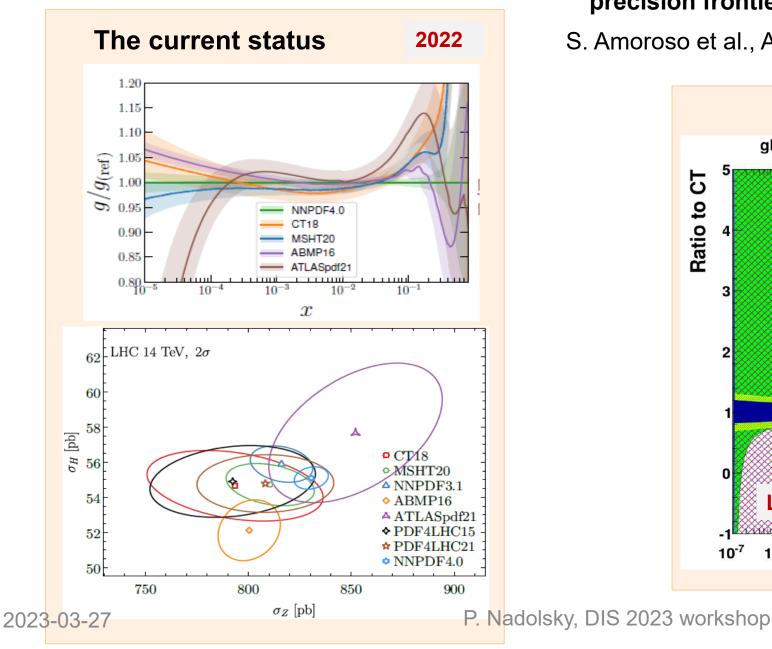
profiling of CT and MSHT PDFs requires to include a tolerance factor $T^2 > 10$ as in the ePump code

[T.J. Hou et al., <u>1912.10053</u>, Appendix F]

Collaborations with other groups

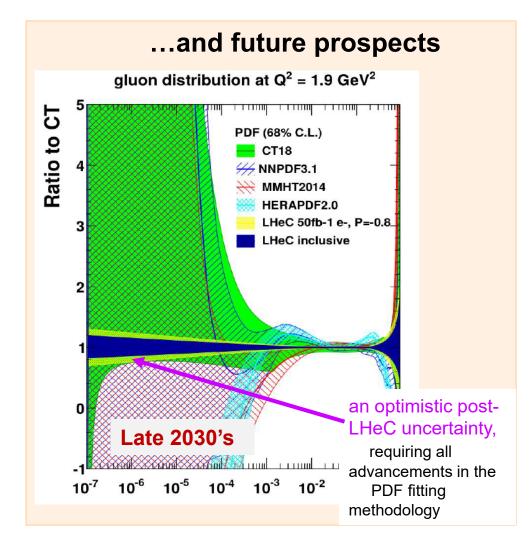

Snowmass'21 whitepaper: Proton structrure at the precision frontier

S. Amoroso et al., Acta Physica Polonica B 53 (2022) 12, A1

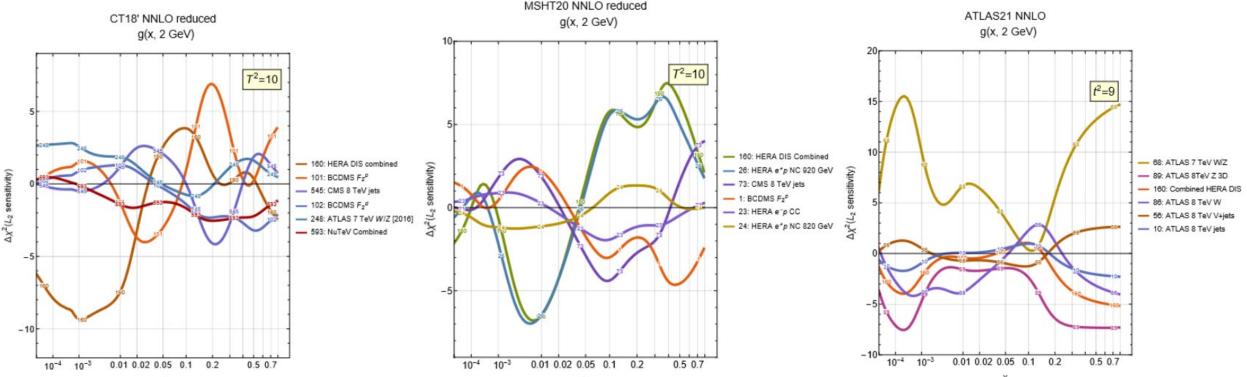

A summary of recent trends in the global analysis of proton PDFs

- 1. Status of modern NNLO PDFs and their applications
- 2. Future experiments to constrain PDFs
- 3. Theory of PDF analysis at N2LO and N3LO
- 4. New methodological advancements
 - Experimental systematic uncertainties in PDF fits
 - Theoretical uncertainties in PDF fits
 - Machine learning/AI connections
- 5. Delivery of PDFs; PDF ensemble correlations in critical applications
- 6. PDFs and QCD coupling strength on the lattice
- 7. Nuclear, meson, transverse-momentum dependent PDFs
- 8. Public PDF fitting codes
- 9. Fast (N)NLO interfaces

10. PDF4LHC21 recommendation and PDF4LHC21 PDFs for the LHC analyses



Progress in PDF analysis


Snowmass 2021 whitepaper: Proton structure at the precision frontier

S. Amoroso et al., Acta Physica Polonica B 53 (2022) 12, A1

20

An ATLAS, CTEQ-TEA, and MSHT comparative study of NNLO PDF sensitivities

- Comparisons of strengths of constraints from individual data sets in 8 PDF analyses using the common L₂ sensitivity metric
- An interactive website to plot such comparisons [2070 figures in total]

Preview

CTEQ-TEA presentations at DIS'2023

Toward a new generation of CT202X PDFs

	1.Impact of Drell-Yan data on post-CT18 global fits	Keping Xie	WG3
	2. Constraints from $t\bar{t}$ production at LHC 13 TeV	Marco Guzzi	WG1
	3. Epistemic uncertainty quantification in PDF fits	P. Nadolsky	WG1
4.	CT18 NNLO fitted charm PDFs [arXiv:2211.01387]	Tim Hobbs	WG1
5.	Prospects for using lattice-QCD constraints in the global PDF analysis	TJ. Hou	Plenary
6.	CTEQ-TEA NNLO predictions for high-energy neutrino cross sections	Dan Stump	WG3
7.	Simultaneous CTEQ-TEA extraction of PDFs and SMEFT contributions	Tim Hobbs	WG3
8.	Small-x dynamics in CTEQ-TEA fits and Forward Physics Facility	Keping Xie	WG2

Thank you for your attention!