Light sea and valence quarks in the CJ22 global PDF analysis

Alberto Accardi

Xiaoxian Jing, J.F. Owens, Sanghwa Park

arXiv:2303.11509

DIS 2023

March 30, 2023

This work is in part supported by the DOE Office of Science

The CTEQ-JLab collaboration

- Coordinated Theory-Experiment Effort with Jefferson Lab:
 - A. Accardi, Xiaoxian Jing, Ishara Fernando, W.Melnitchouk, J.F.Owens
 - Oc.E. Keppel, Shujie Li, P. Monaghan, Sanghwa Park
- Focus
 - Large-x, low- $Q^2 \rightarrow TMC$, HT
 - \circ Nuclear dynamics \rightarrow p,n motions, off-shell PDFs
 - F2(n) extraction, CJ15ht (S. Li, I. Fernando)
 - Light antiquarks (S. Park, X. Jing)

CJ15

Strange sea

Prelim. analysis: Park et al., 2108.05786

New: electroweak data

New: light antiquark parametrization

• **CJ15:** Accardi et al., PRD 93 (2016) 11

$$\bar{d}/\bar{u} = a_0 x^{a_1} (1-x)^{a_2} + 1 + a_3 x (1-x)^{a_4}$$

- Large x: tends to 1 from above
- Shape "hugs" E866 data
- CJ22: follows CJ15-a, reverts back to CJ12 param: Accardi et al., PLB 801 (2020) 135143

$$x(\bar{d} - \bar{u}) = \bar{a}_0 x^{\bar{a}_1} (1 - x)^{\bar{a}_2} (1 + \bar{a}_4 x)$$

- O Unconstrained x→1 limit
- \circ Free $ar{a}_2$ instead of fixing $ar{a}_2 = a_2 + 2.5$
- o More flexibility \longrightarrow more data, fix extra parameters sensitivity to db/ub \longleftrightarrow d/u anticorrelation

New: fit framework

- Electroweak pair production (Xiaoxian Jing)
 - γ, W, Z
 - NLO calculations with APPLgrid + MCFM
 - Tested against E866, D0 W asymmetry in CJ15

- STAR W grids (Sanghwa Park)
 - o Exp. cuts:

$$\rightarrow p_e > 15 \text{ GeV}, 25 < E_e < 50 \text{ GeV}$$

- Jet suppression (as in STAR paper):
 - \rightarrow Vetoed jet production \rightarrow 20% cross section suppression
- STAR Z,
 - see paper

New: PDF error analysis

- "Adjusted" Hessian approximation Accardi et al., EPJC 81 (2021) 7
 - Diagonalize H
 - Error PDFs defined in each eigendirection by

$$\Delta \chi_i^2, \pm = 1.645 \quad \longleftrightarrow \quad "90\% \ c.l."$$

- Local asymmetric tolerance criterion
 - → Accounts for deviation from Gaussian likelihood
- Important for:
 - Constrained observables (e.g., $n/p \longleftrightarrow d/u$ at large x)
 - \circ Regions with poor data constraints (e.g., db/ub at x > 0.3, extrapolation)

CJ22 data set

Obs.	Experiment	Ref.	# Points	χ^2
DIS	JLab (p)	[31]	136	161.0
	JLab (d)	[31]	136	119.1
	JLab (n/d)	[32]	191	213.2
	HERMES (p)	[33]	37	29.1
	HERMES (d)	[33]	37	29.5
	SLAC (p)	[34]	564	469.8
	SLAC (d)	[34]	582	412.1
	BCDMS (p)	[35]	351	472.2
	BCDNS (d)	[36]	254	321.8
	NMC (p)	[37]	275	416.5
	NMC (d/p)	[38]	189	199.6
	HERA (NC e^-p)	[39]	159	249.7
	HERA (NC e^+p 1)	[39]	402	598.9
	HERA (NC e^+p 2)	[39]	75	98.8
	HERA (NC e^+p 3)	[39]	259	250.0
	HERA (NC e^+p 4)	[39]	209	229.1
	HERA (CC e^-p)	[39]	42	45.6
	HERA (CC e^+p)	[39]	39	52.5

Obs.	Experiment	Ref.	# Points	χ^2
LPP	E866 (pp)	[4]	121	144.1
	E866 (pd)	[4]	129	157.4
	SeaQuest (d/p)	[5]	6	7.5
W	CDF(e)	[40]	11	12.6
	D0(e)	[41]	13	28.8
	$D0(\mu)$	[42]	10	17.5
	CDF(W)	[43]	13	18.0
_	D0(W)	[44]	14	14.5
	STAR (e^+/e^-)	[6]	9	25.3
1111	(less $\eta_{\rm max}$ point)		(8)	(15.4)
Z	CDF	[45]	28	29.2
	D0	[46]	28	16.1
jet	CDF	[47]	72	14.0
	D0	[48, 49]	110	14.0
γ +jet	D0 1	[50]	16	8.7
	D0 2	[50]	16	19.3
	D0 3	[50]	12	25.0
	D0 4	[50]	12	12.2
	total		4557	4936.6
	total + norm		4573	4948.6

Lepton Pair Production

Fit new data (SeaQuest & STAR)

SeaQuest:
$$\chi^2$$
/datum = 3.19

1.25

E866 :
$$\chi^2$$
/datum = 1.63

1.93

Lepton Pair Production

Comparable results to JAM, CT:

Weak boson production

- Large reduction in uncertainty driven by SeaQuest data
- STAR contributes ~ 15% reduction around x~0.16
 - o distributed between d/u (5%) and db/ub (10%) PDF ratios

Weak boson production

- Only W+/W- ratio was fitted
 - Other plots compare data to theory
- Largest rapidity W⁺ not reproduced
 - Would require too small db/ub
 - Or too large d/u
- More structure in W⁻ data
 than in the theory calculation

Weak boson production

Similar results from JAM, other calcs

Light quarks and anti quarks

Summary

- CJ22: new electroweak data, flexible antiquark parametrization
 - SeaQuest data
 - → Pulls up db/ub, naturally relaxes to 1 from above at large x
 - db/ub anticorrelated with d/u
 - \rightarrow Pushes down d/u relative to CJ15, now closer to 0 as x \rightarrow 1
- Upcoming from CJ (see backup):
 - F2(n) "data" extraction very soon!
 - HT, offshell systematics
 - (Strange sea with LHC electroweak data)

Backup

SeaQuest kinematics

Comparison to other recent PDFs

SeaQuest fitted:

PDFs w/o SeaQuest:

CJ15 and AKP: free nucleons

AKP has smaller d/u but bigger n/p ???

- Not possible at Leading Twist!
- \rightarrow Large HT contributions to high-x n/p ratio

CJ15: PRD 93 (2016) 114017 **AKP**: PRD 96 (2017) 054005 (see also 2203.07333)

HT systematics & offshell corrections

Additive vs. Multiplicative

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$
$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

Isospin, Q^2 evol. not independnt

$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

Non-negligible large-x bias

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} & \text{mult. } p = n \end{cases}$$

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

I. Fernando

0.25 $\frac{n}{l}$ 0.20

0.15

HT systematics & offshell corrections

Additive vs. Multiplicative

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$
$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

• Isospin, Q² evol. not independnt

$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

Isospin dependent HT:

BIAS REMOVED!

I. Fernando

Bonus cross-checks

BONuS: Tagged proton DIS measurements

F₂(n) extraction and apps

Basic idea:

$$\widehat{F}_2^{n(0)}(x, Q^2) = \frac{2 \, \widehat{F}_2^{d(0)}(x, Q^2)_{\text{exp}}}{R_{d/N}^{\text{CJ}}(x, Q^2)} \, - \, \widehat{F}_2^{p(0)}(x, Q^2)_{\text{exp}}$$

But also:

- P, d data matching
- Data cross normalization
 - \rightarrow using CJ15 PDFs
 - → refitting norm,Correlated shifts
- Bin-centering for Isosinglet moment
- 0 ...

Shujie Li

F₂(n/p) extraction

- Similar idea, but using
 - o d/p data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{2\,\widehat{R}_{d/p}^{\mathrm{exp},(0)}}{R_{d/N}^{\mathrm{CJ}} - 1}$$

o n/d BONuS data

$$\hat{R}_{n/p}^{(0)} \equiv \frac{\hat{R}_{n/d}^{\exp,(0)} R_{d/N}^{CJ}}{1 - \hat{R}_{n/d}^{\exp,(0)} R_{d/N}^{CJ}}$$

