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Overview

e Uncertainty Quantification: Parametric Methods
© Monte Carlo Bayesian estimators
O Hessian approximation
o Dataresampling

e Description of Toy Model
o Benchmark of Hessian and MC methods

e Neural Network Comparison

o  Algorithmic modification of likelihood?

(see also N. Sato @ DIS 2018)
A whole session devoted to PDF uncertainties:

> P. Nadolsky — “Epistemic uncert. quant.”
> L. Kotz — “Bezier curve parametrizations”
> K. Mohan — A new statistical method”




Uncertainty quantification:
parametric methods




Bayesian estimators

e Bayestheorem la m) — L plm {(,‘1 | pla )
with “evidence” Z = | da p(m|a) p(a)
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and “likelihood” pim|a) = N exp [ — sX (a,m)

Typical choice in PDF analyses
e Algorithms for sampling of likelihood — {a,}
o HMC: Hamiltonian Monte Carlo (an example of Markov-Chain MC methods)
o NS: Nested Sampling, primarily aimed at estimating the evidence
— Samples the likelihood as a byproduct

e Expectation values FBayes{O(a)} = =D 11 O(ak),
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and variance VBayes{O(a)} = o , (O(ai) — FBaves{O(a))
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Data resampling

e Data Resampling (DR) approximates Bayes’ posterior using frequentist logic

o Reshuffle data within data uncertainty (Gaussian distribution)
o Maximize likelihood

o Repeatn  times — {a}

® Estimate

/;lj)v._,'('l { Ola ) } = S“E“i: O(a rep) ;

Il T( I

o YL ) 1 N ‘lreg [ 7 s \ Y 77 A *'-7-)
| 'fl‘-';rf{'{ a)}=—"=>" _L)' Urep) — E h'u’i'{ O(a) 1‘

/»’:..l ——

e Good in parameter space region well constrained by data




Generalized Hessian Approximation

Hunt-Smith et al., PRD 106 (2022) 036003
Start as usual:

©  Find minimum of likelihood
o Diagonalize Hessian — e, eigenvectors, w, eigenvalues

Change variables: a(f) = ay + ZQZ” tr——= , then p(alm) — p(tjm)
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Assume likelihood factorized along Hessian eigendirection, then

Fhess{O(a)} = [d" p(tim) O(a(t)) = O(ap)
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, A\ ~ 2 [ 80(a(t)) ]
Vitess{O(a)} = > T ( T o | )
" lag
Here 77 — [diy prlipm)i] isthe “tolerance” :
o Tk= 1 where likelihood is Gaussian;
o  Approximates well the likelihood in non-Gaussian directions

o Maintains a “68%"” or “10” kind of meaning also when # 1
CT, MSTW — T=5-10

Often T, determined “ad hoc” to account for statistical inconsistency of data




Toy Model




Toy model

® PDFs f: mimic up and down quarks

e Observables ¢ : mimic proton, neutron DIS cross section at fixed Q?
o Data randomly generated according to corresponding x distributions
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Equivalency of parametric methods

e Bayesian MC estimators
used as benchmark

e Hessian approximation is good!
o Generalized tolerance
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Neural Network Fits
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Neural Networks and overfitting

Neural networks provide:

O

O

O

Aim at maximizing the same likelihood

p(m|a) =Nexp | — 5x°(a,m)

Without intervention, will overfit the data
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Efficient, very flexible parametrizations

Hundreds of parameters

Essentially a parameter free functional form
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The plot shows an extreme example
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Cross-validation (CV) and stopping

Needs a “stopping criterion”

o to avoid fitting statistical noise instead of physics

Randomly separate the data into 2 groups, say
o 70% — training (T)
o 30 % — validation (V)

ot

Fit the training, calculate x*(T) and x?(V)

=

Resample data, repeat

“Stop” training when x%(V) is minimum:
o = E|og]
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Cross-validation (CV) and stopping

Needs a “stopping criterion”
o to avoid fitting statistical noise instead of physics

Randomly separate the data into 2 groups, say
o 70% — training (T)
o 30 % — validation (V)

Fit the training, calculate x*(T) and x?(V)

Resample data, repeat

E 0.75

“Stop” training when xz(V) is minimum: S 0.501
o = Elog) 0.25

do = Vi]og] 0.00
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Comparable in shape

Quite larger uncertainty!
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Comparison of NN to parametric methods

® DR as representative of parametric methods
e Neural Network fits:
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Dependence on training fraction f

e The fit is quite independent of the T/V partitioning
o b/cin each replica the training data is randomly chosen
o So it spans the whole x range
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® The uncertainty strongly depends =
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Dependence on training fraction f

e The fit is quite independent of the T/V partitioning
o b/cin each replica the training data is randomly chosen
o So it spans the whole x range

BUT
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e NN fits inflate the uncertainty estimate!
o  Partly due to cross-validation
o  Structure in x difficult to understand
o  Uncertainty explodes at large x

e Dataresampling + Cross Validation

also inflates the uncertainty
o Validation set “pulls” against training set
O Butin the same way across x

% true law within uncertainty
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The algorithms have effectively

modified the nominal exp(-x?) likelihood!
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In conclusion...
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Food for thought

Reliable quantification of PDF uncertainties needed for QCD and HEP applications

Parametric methods produce the same likelihood estimates
o Bayesian MC methods
O Hessian approximation
o Dataresampling

Neural Network fits
o  Algorithmically modify the nominal likelihood
o The resulting uncertainties are not directly comparable to parametric estimates
— Enlarged uncertainties do not look like a natural replacement
for tolerance criterion to account for tension in the data sets

In what sense can NNPDF be combined with others in, say, PDF4LHC fits?
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