F_{2}^{p} and F_{2}^{d} extractions at large Bjorken X from $h\left(e, e^{\prime}\right) \& d\left(e, e^{\prime}\right)$ cross sections measured during E12-10-002 in Hall C at Jefferson Lab

DEB (Debaditya Biswas)

Post-doctoral Research Associate
Virginia Tech, VA, USA
March 27-31, 2023
Email : biswas@jlab.org

Unique features of the E12-10-002 data

- Ran in the spring of 2018 in parallel with EMC experiment
- Targets used : liquid hydrogen and liquid deuterium
- Large Bjorken x coverage
- Large Q^{2} coverage using both the HMS and SHMS spectrometers

Basic Feynman diagram for deep inelastic
electron-proton scattering

March 27-31, 2023

Extraction of proton cross-section

- Proton cross-section is extracted for SHMS at 21.035°
- Proton cross-section is extracted also for four other SHMS angles $24.98^{\circ}, 28.99^{\circ}, 32.975^{\circ}, 38.975^{\circ}$
- Compared with F1F221 (red solid line)
- F1F221 model is a fit to the world data of inclusive crosssections
- In this plot model does not include the data from this experiment (E12-10-002)
- The model is valid for wide range for $W^{2}<30 \mathrm{GeV}^{2}$ and $Q^{2}<30 \mathrm{GeV}^{2}$
- For $x=0.2$ to 0.7 , the data matches with the model within better than 3\%
- At large x the model is not well constrained, which is one of the biggest motivation for this experiment

Extraction of deuterium cross-section

- Deuterium cross-section is extracted for SHMS at 21.035°
- Deuterium cross-section is extracted also for four other SHMS angles $24.98^{\circ}, 28.99^{\circ}, 32.975^{\circ}, 38.975^{\circ}$
- Compared with F1F221 (red solid line)
- F1F221 model is a fit to the world data of inclusive crosssections
- In this plot model does not include the data from this experiment (E12-10-002)
- The model is valid for wide range for $W^{2}<30 \mathrm{GeV}^{2}$ and $Q^{2}<30 \mathrm{GeV}^{2}$
- For $x=0.2$ to 0.7 , the data matches with the model within better than 3\%
- At large x the model is not well constrained, which is one of the biggest motivation for this experiment

Extraction of proton F_{2}

Hydrogen, SHMS, $\theta=21.035^{\circ}$

$\sigma_{T}=\frac{4 \pi \alpha}{K M} F_{1}, \quad \sigma_{L}=\frac{4 \pi^{2} \alpha}{K M \nu}\left[\left(1+\frac{\nu^{2}}{Q^{2}}\right) M F_{2}-\nu F_{1}\right]$
$\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\Gamma\left[\sigma_{T}\left(x, Q^{2}\right)+\epsilon \sigma_{L}\left(x, Q^{2}\right)\right]$

- Proton structure function F_{2} for SHMS at 21.035°
- Proton structure function F_{2} is extracted also for four other SHMS angles $24.98^{\circ}, 28.99^{\circ}, 32.975^{\circ}, 38.975^{\circ}$
- Compared with F1F221 (red solid line)

Extraction of deuterium F_{2}

$\sigma_{T}=\frac{4 \pi \alpha}{K M} F_{1}, \quad \sigma_{L}=\frac{4 \pi^{2} \alpha}{K M \nu}\left[\left(1+\frac{\nu^{2}}{Q^{2}}\right) M F_{2}-\nu F_{1}\right]$
$\frac{d^{2} \sigma}{d \Omega d E^{\prime}}=\Gamma\left[\sigma_{T}\left(x, Q^{2}\right)+\epsilon \sigma_{L}\left(x, Q^{2}\right)\right]$

- Deuterium structure function F_{2} for SHMS at 21.035°
- Deuterium structure function F_{2} is extracted also for four other SHMS angles $24.98^{\circ}, 28.99^{\circ}, 32.975^{\circ}, 38.975^{\circ}$
- Compared with F1F221 (red solid line)

Extraction of neutron F_{2} (from A. Nadeeshani)

SHMS F2 21 deg

- In deuterium proton and neutron are in bound state
- Neutron cross-section can be calculated by subtracting the proton cross-section from the deuteron and nuclear effects removed
- To get the unbound $\mathrm{p}+\mathrm{n}$ cross-section from the bound $\mathrm{p}+\mathrm{n}$ state inside deuterium-

$$
\begin{gathered}
\sigma_{p+n}=\frac{\sigma_{p+n}^{\text {model }}}{\sigma_{d}^{\text {model }}} \times \sigma_{d}^{\text {data }} \\
\sigma_{\text {data }}^{n}=\sigma^{p+n}-\sigma_{\text {data }}^{p}
\end{gathered}
$$

σ_{D} / σ_{H} ratio (from w. Henry)

- σ_{D} / σ_{H} is shown as a function of x for angle 21.035°
- Data is compared with four of the available models-

O CJ15
o KP Hybrid
O AKP17
O JAM

- Data is also compared with F1F221 which is a fit to the world data
- All models are shown here does not include the data from this analysis
- The error bars include point to point and statistical

σ_{D} / σ_{H} ratio (from W. Henry)

- σ_{D} / σ_{H} is shown as a function of x for angle $24.98^{\circ}, 28.99^{\circ}, 32.975^{\circ}, 38.975^{\circ}$
- Data is compared with four of the available models-

O CJ15
o KP Hybrid
O AKP17
O JAM

- Data is also compared with F1F221 which is a fit to the world data
- All models are shown here does not include the data from this analysis
- The error bars include point to point and statistical

E12-10-002 data enriches the world data

Quark-Hadron duality

Bjorken X
-From the pioneering work of Bloom and Gilman at SLAC we know F_{2} structure function data at DIS region also describe the average resonance region F_{2} data at same Q^{2}
-For a broad range of Q^{2} the dips and peaks (defined by W^{2}) of different resonances passes through a particular x

- Hence averaging a large enough Q^{2} region should recover the scaling curve

As the resonances are defined by W^{2} it is important to check the W^{2} coverage for each x bin (next slide)

Quark-Hadron duality

March 27-31, 2023

Local Quark-Hadron duality (from A. sun)

- Quark hadron duality is tested by plotting the quantity : I(res $/ D I S)=\frac{\int F_{2}^{D A T A} d W^{2}}{\int F_{2}^{\text {scaling }} d W^{2}}$
- CJ15 curve is used for the DIS / scaling curve
- Vertical lines show the boundaries for the different resonance regions
- Where $\int F_{2}^{\text {data }}=\sum_{i} \frac{\left(F_{2}\left(W_{i}^{2}\right)+F_{2}\left(W_{i+1}^{2}\right)\right) \Delta W^{2}}{2}$
- I is plotted vs the average Q^{2} for different resonance regions, DIS region and for global (next slide)
- This experiment extends the previous study to larger Q^{2}

Local Quark-Hadron duality (from A. sun)

- Duality also can be checked for each resonance
- E12-10-002 data extends the work previously done by S. Malace in 6 GeV era
- Left plot for hydrogen
- Each point in every plot indicated an particular angle
- Six panels corresponds to 1st resonance, 2nd resonance, 3 rd resonance, 4th resonance, 5 th resonance, DIS, and Global

Local Quark-Hadron duality (from A. sun)

Impact of the E12-10-002 data on d / u PDF fit by CJ

- TOP Panel :
- Blue Line : Relative change in CJ15 central value of d / u PDF when data from this analysis is included
- The band is the error on the fit before inclusion of this data
- Bottom Panel :
- The relative error on CJ15 PDF fit after inclusion of the data from this experiment
- Inclusion of this data results in $25-30 \%$ reduction of uncertainty in d / u PDFs
- A cut of $W^{2}>3 \mathrm{GeV}^{2}$ applied to the data that enters the fit

Summary

- σ_{D} / σ_{H} ratio paper is to be published soon : Stay tuned
- Individual cross-sections of proton, deuterium and neutron papers is being finalized : Next publication after ratio paper
- This data can be used along with other experimental data to extend the study of Quark-Hadron duality to even higher Q^{2}
- Previous study of non-singlet moment (Ibrahim H. Albayrak et. al.) as a test of LQCD can be extended with the data
- Together with other experiments like Bonus, Marathon this data set can be very useful for different studies

Thanks to All Collaborators

Spokespersons and Collaborators

- C. Keppel (Jefferson Lab)
- M. Eric Christy (Jefferson Lab)
- S. Malace (Jefferson Lab)
- D. Gaskell (Jefferson Lab)
- W. Henry (Jefferson Lab)
- I. Niculescu (JMU)
- G. Niculescu (JMU)
- A. Accardi (Hampton)
PhD's From E12-10-002
- D. Biswas (PhD from Hampton University, Postdoc @ Virginia Tech)
- A. Sun (PhD from Carnegie Mellon University)
- A. Nadeeshani (PhD from Hampton University, Postdoc @ Missisipi State University)
- F. Gonzalez (PhD from Stony Brook University)

> Current Graduate Student

- Gyang Chung (Virginia Tech)

Back up Slides

Quark-Hadron duality

Quark-Hadron duality

Local Quark-Hadron duality (from A. sun)

