

Measurement of azimuthal decorrelation between the leading jet and the scattered lepton in deep inelastic scattering at HERA

Jae D. Nam

Temple Univ.

For the ZEUS collaboration

HERA / ZEUS

HERA

- First and only $e^{\pm}p$ collider
- $\sqrt{s} = 318 \, GeV \, (HERA \, II)$
- $L \sim 360 \ pb^{-1}$
- Access to low-x ($x_{Bj} \sim 10^{-3}$) with ZEUS detector
- Variety of existing jet studies

ZEUS

- General purpose detector
- Jet reconstruction down to $E_T > 2.5 \; GeV$ with < 4% resolution.
- Two independent luminosity monitors, $\delta L/L \sim 2\%$.

Previous Jet Results at HERA

- Inclusive jets in photoproduction (Nucl. Phys. B864 (2012), 1-37)
- Isolated photons accompanied by jets in DIS (PLB 715 (2012) 88-97)
- Isolated photons plus jets in PHP (PLB (2014) Volume 730, 293-301)
- More on isolated photons plus jets in PHP (JHEP 2014 (23))
- Diffractive di-jet production in DIS (EPJC 76 (2016) 16)
- Diffractive photoproduction of isolated photons at HERA (PRD 96 (2017) 032006)
- Further studies of isolated photon production with a jet in deep inelastic scattering at HERA (JHEP (2018) 2018: 32)
- Azimuthal correlation in photoproduction and deep inelastic ep scattering at HERA. (JHEP (2021) 102)
- Measurement and QCD analysis of inclusive jet production in deep inelastic scattering at HERA (Preliminary)

Jet-lepton decorrelation

- In jet production events in DIS, the jet is produced back-to-back ($\Delta\phi_{dec}=\pi$) with respect to the outgoing lepton.
- Small deviations from $\Delta\phi_{dec}=\pi$ may arise if the struck quark carries a non-zero transverse momentum, or when the process involves soft gluon radiation.

Jet-lepton decorrelation

- In jet production events in DIS, the jet is produced back-to-back ($\Delta\phi_{dec}=\pi$) with respect to the outgoing lepton.
- Large deviations from $\Delta \phi_{dec} = \pi$ may arise if extra jets are formed from hard QCD radiation.

Jet-lepton decorrelation

- Jet-lepton decorrelation can be used to probe soft and hard QCD radiation effects without explicit description of the additional jets.
- Can access TMD distributions, complementary to SIDIS, <u>without</u> explicit description of TMD fragmentation function [Liu et al., PRL 122 (2019) 192003, Lui et al., PRD 102 (2020) 094022].
- Can be measured with HERA data, which already exist and are well understood.

Previous Azimuthal Jet Results

PRL 128 (2022) 13, 132002

PRL 106, 122003 (2011)

PRL 106, 172002 (2011)

- Previous results from Tevatron (D0) and LHC (ATLAS, CMS)
 - Improvements in data description by high order correction (NLO to LO).
 - MC generators describe data well except in the region $\Delta \phi \sim \pi \Longrightarrow$ tune MC based on data.

• Recent results from HERA (H1)

Tomorrow, WG4, Yao Xu, Fernando Acosta

- Improvements in data description by TMD calculation around the region $\Delta\phi \sim \pi$.
- Large overlap of collinear/TMD frameworks.

Analysis Details (Event Selection)

Kinematic region

- $10 \ GeV^2 < Q^2 < 350 \ GeV^2$ (Double-angle)
- 0.04 < y < 0.7 (Electron, Jacquet-Blondel)

Electron

- $E_e > 10 \; GeV$
- $140^{o} < \theta_{e} < 180^{o}$ (detector effects $\theta < 175^{o}$)

Jets

- Massive jets in the lab frame, kT algorithm with E recombination scheme
- $2.5 \ GeV < p_T < 30 \ GeV$
- $-1.5 < \eta < 1.8$
- FastJet 3.4.0
 (M. Cacciari et al., EPJC 72 (2012) 1896)

Good description of data by MC!

Analysis Details (Measurement)

• Inclusive $(N_{jet} \ge 1)$ measurement of differential cross section in azimuthal decorrelation $\Delta \phi_{dec}$ between the leading jet and the lepton

$$\frac{d\sigma\left(e+p\rightarrow e+jet+X\right)}{d\Delta\phi_{dec}} = \frac{1}{\epsilon}\times A^{-1}\frac{dN_{jet}(\Delta\phi_{dec})}{d\Delta\phi_{dec}}$$
 efficiency unfolding

- Leading jet = jet with the highest E_T
- $\Delta \phi_{dec} = \left| \phi_{jet} \phi_e \right|$
- MC-based (ARIADNE 4.12) unfolding & efficiency correction
 - $\epsilon \sim 0.8$, no strong dependence found.
- Measurement unfolded to the hadron level
 - Hadron jets with FastJet 3.4.0, kT algo with E scheme and R = 1
 - Massive jets in the lab frame with all final state particles, as identified by ARIADNE, without scattered lepton and neutrino.

Analysis Details (Unfolding)

- Matrix-based unfolding
 - L-scan method as interfaced in TUnfold package (S.Schmitt, JINST 7 (2012) T10003)
 - Takes the migration matrix of $\Delta\phi_{dec}$ as input
- No additional jet matching outside the unfolding
 - Leading jet misidentification shows up as $\Delta \phi$ shift of, for the case of dijet, $\sim \pi$.
- Model-dependence of the unfolding process estimated with MEPS-LEPTO based MC sample.
 - \sim 5% effect at $\Delta \phi \sim \pi$.
- For final publication, N_{jet} correlation will also be included in the unfolding process.

Theory

- Perturbative calculations from UNSAM (Borsa, de Florian, Pedron).
 - Calculations for EIC (Borsa et al., PRL 125 (2020) 082001) revisited for HERA kinematics.
 - Fixed order (up to $O(\alpha_s^2)$) calculations using the projection-to-Born method.
 - Takes a jet plus an extra jet at NLO and fully inclusive DIS at NNLO to produce single-inclusive ($N_{iet} \ge 1$) calculation at NNLO.
 - PDF4LHC15 sets.
 - No HQ contribution.
 - Calculations are produced at the parton level.
 - → hadronization correction with ARIADNE.
 - \rightarrow Model dependence in hadronization correction evaluated with LEPTO, \sim 5%.
- Ongoing communication with experts (Feng Yuan) for TMD calculations for ZEUS kinematics!

Results

- Previous preliminary $\Delta\phi_{dec}$ distribution compared to LHC finds a qualitative agreement.
- Soft gluon effects near $\Delta\phi{\sim}\pi$ in high jet multiplicity cases.
- Agreement with MC degrades at high jet multiplicity, pointing to the need for improvements in the theoretical description.

Results (Inclusive)

- Azimuthal angle jet/electron measurement for the inclusive case $(N_{jet} \ge 1)$.
 - Systematics study suggests that the model dependence of the unfolding process is the dominating contribution (\sim 5% at $\Delta\phi_{dec}\sim\pi$)
 - Efficiency correction $\sim 20\%$.
- Comparison to pQCD calculations.
 - Hadronization correction with uncertainty of ~5%.
 - Clear improvement seen from NNLO compared to NLO.
 - Not enough phase space available for additional jet production with NLO around $\Delta\phi_{dec} < 3/4\pi$.
 - High $\Delta \phi_{dec}$ behavior due to large logs from soft gluon radiation.
 - ➤ Input from TMD will improve the understanding in this region.

Results (Inclusive)

- Azimuthal angle jet/electron measurement for the inclusive case $(N_{jet} \ge 1)$.
 - Systematics study suggests that the model dependence of the unfolding process is the dominating contribution (\sim 5% at $\Delta\phi_{dec}\sim\pi$)
 - Efficiency correction ~20%.
- Comparison to ARIADNE MC.
 - ARIADNE is normalized to data, as it is only at LO + parton shower.
 - The $\Delta\phi_{dec}$ distribution is much steeper with ARIADNE, hinting that the high jet multiplicity from hard production may be underestimated.

Results ($p_{T,jet} \& Q^2$)

- Comparison to pQCD in different ranges of $p_{T,jet}$ and Q^2 .
- Good jet reconstruction near the kinematic limit $p_{T,jet} \sim 2.5~GeV$, as suggested by this comparison.
- Soft gluon effects near $\Delta \phi \sim \pi$ maximize in low- $p_{T,iet}$ and Q^2 .
- Poor description of data in high- Q^2 around $\Delta \phi < 3/4\pi$ currently under investigation.

Results ($p_{T,jet} \& Q^2$ MC)

- Comparison to MC in different ranges of $p_{T,jet}$ and Q^2 .
- The $\Delta\phi$ distribution of MC much more sensitive to $p_{T,jet}$ than data.
- Final results will also include N_{jet} measurement.

Summary/Outlook

Summary

- Preliminary results of azimuthal decorrelaton measurements of lepton and leading jet in DIS, similar to previous ZEUS γ -jet results and other experiments in pp collisions.
- Measurement of new jet observable with the existing ZEUS data.
- Comparisons to pQCD provide test of perturbative stability of the jet production process.
- May serve as a complementary measurement to SIDIS measurements with added benefits of not needing TMD FF.
- Overall, the pQCD at NNLO accuracy and ARIADNE describe main features of data well; some discrepancies are observed which will be investigated further in the final measurement.

Outlook

- Final measurement/publication will include measurements in various N_{jet} configurations.
- In communication with TMD experts for input.
- Jet-lepton decorrelation measurement will provide an important probe in future colliders, such as EIC.