Unecertainty quantification, a challenge for Al,
As we try to analyze PDF's and understand why.
With machine learning methods we strive

To make sense of the data and derive.

But uncertainty presents a hurdle

As we try to make predictions and be certain.
It's a challenge that we must face

As we work to improve our models with grace.

Parton distributions, oh how they vex

As we try to understand their complex effects.
But still we persist, for we must know

The secrets that uncertainty has yet to show.

Microsoft Bing




Epistemic Uncertainty Quantification
in PDF fits

Pavel Nadolsky
Southern Methodist University

Numerical results from

A. Courtoy, J. Huston, P. N., K. Xie, M. Yan,
C.-P. Yuan, Phys. Rev. D 107, (2023) 034008

[full comparisons in arXiv:2205.10444
and at https://ct.nepforge.org/PDFs/2022hopscotch/]
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Epistemic PDF uncertainty...

...reflects methodological choices such as PDF
functional forms or NN architecture and
hyperparameters.

... can dominate the full uncertainty when experimental
and theoretical uncertainties are small.

...Is associated with the prior probability.

... can be estimated by representative sampling of
the PDF solutions obtained with acceptable
methodologies.

= sampling over choices of experiments, PDF/NN
functional space, models of correlated uncertainties...

= in addition to sampling over data fluctuations

2023-03-29 P. Nadolsky, DIS'2023 workshop
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Components of PDF uncertainty

In each category, one must
maximize

. PDF fitting accuracy
(accuracy of

experimental, theoretical
and other inputs)

" PDF sampling accuracy
(adequacy of
sampling in space of
possible solutions)

Fitting/sampling classification is borrowed
from the statistics of large-scale surveys
[Xiao-Li Meng, The Annals of Applied
Statistics, Vol. 12 (2018), p. 685]

2023-03-29 P. Nadolsky, DIS'2023 workshop



Tolerances explained by epistemic uncertainties

Relative PDF uncertainties on the gg
luminosity at 14 TeV in three
PDF4LHC21 fits to the identical reduced

global data set arXiv:2203.05506
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While the fitted data sets are identical or similar in
several such analyses, the differences in uncertainties
can be explained by methodological choices adopted by
the PDF fitting groups.

NNPDF3.1" and especially 4.0 (based on the NN's+ MC
technique) tend to give smaller nominal uncertainties in
data-constrained regions than CT18 or MSHT20

Epistemic uncertainties explain some of these
differences.

1. Inclusion of multiple parametric forms in the CT18
uncertainty

2. Constraints from the effective prior in the NNPDF4.0
uncertainty

3. Parametrization uncertainty in xFittter/JAM-like pion
PDF fits = L. Kotz, WG 1

P. Nadolsky, DIS'2023 workshop



CT18:

2023-03-29

the uncertainty reflects multiple PDF parametrizations
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Upper figure: A large part of the CT18 PDF
uncertainty accounts for the sampling over
250-350 parametrization forms, possible
choices of fitted experiments and fitting
parameters, definitions of y?

Lower figure: this approach sometimes
enlarges the uncertainties compared to the
other groups, reflecting the chosen
goodness-of-fit (tolerance) criterion more than
the strength of experimental constraints

However, more restrictive tolerance criteria
elevate the risk of sampling biases.

Easier to examine these issues for specific
QCD observables than in abstract

P. Nadolsky, DIS'2023 workshop



NNPDF4.0: hopscotch scans suggest enlarged uncertainties

NNPDF replicas sample aleatory data fluctuations for a fixed
training methodology (called “importance sampling” by NNPDF)

Representative sampling of epistemic uncertainty is
challenging because of the large NN (hyper)parameter space

« Curse of dimensionality

« Big-data paradox [X.-L. Meng, Ann. App. Stat., 12 (2018) 685;
F. Hickernell, MCQMC 2016, 1702.01487]

A hopscotch scan is a technique to densely sample a few PDF
parameter combinations relevant for the QCD observable of
interest by using NNPDF4.0 Hessian PDFs and NNPDF4.0
fitting code

The hopscotch scan relies on dimensionality reduction

2023-03-29 P. Nadolsky, DIS'2023 workshop
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Figure 3.9. The neural network architecture adopted for NNPDF4.0. A single network is used, whose eight output
values are the PDFs in the evolution (red) or the flavor basis (blue box). The architecture displayed corresponds
to the optimal choice in the evolution basis; the optimal architecture in the flavor basis is different as indicated by

Table 3.3).

R. Ball et al., arXiv:2109.02653
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Using the public NNPDF4.0 fitting code, we find well-behaving PDF solutions to the
NN4.0 fit that have better y? with respect to central data values (by as much as 35-
80 units depending on the y? definition) than the published replica 0. These

replicas follow a regular pattern. They lie outside of the nominal (red) NN4.0
uncertainties in the 50-dimensional PDF parameter space.
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The hopscotch scans: NNPDF4.0 vs CT18 uncertainties
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The ellipses are
projections of 68% c.l.
ellipsoids in N, ,,--dim.
spaces

Npqr = 28 and 30 for
CT18 and NNPDF4.0
Hessian PDFs
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Hopscotch scans realize the likelihood-ratio test
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A likelihood-ratio test of NN models T; and T,

From Bayes theorem, it follows that

P(T;|D) P(D|T,) P(T3)
= X
P(T.|D) P(DI|T;) P(T,)
= T'posterior = Tikelihood = T'prior
aleatory epistemic + aleatory probabilities

2_ .2
Suppose replicas T, and T, have the same y* ["likelihood = €XP (Xlzxz) = 1], but T, is disfavored

compared to T; [rposterior < 1]-

This only happens if Tprior <K 1: T, is discarded based on its prior probability.

2023-03-29 P. Nadolsky, DIS'2023 workshop 14



Goodness-of-fit functions in PDF analyses

Analysis x? prescription x? prescription Comments
to fit PDFs to compare PDFs
HERAPDF HERA HERA
CT Extended T +prior Extended T,
Experimental
MSHT’20 T T
NNPDF4.0 to + prior Experimental or ¢, to prescription has pre-
with fluctuated cross-sampled with unfluctuated full and post-NNPDF3.0
data data versions
Hopscotch’2022 N/A Experimental or ¢,
[2022]
with unfluctuated data

Different prescriptions reflect modeling of additive and multiplicative systematic
errors in covariance matrices

2023-03-29 P. Nadolsky, DIS'2023 workshop



# / Chi square figures of merit View page source

Chi square figures of merit

Search docs

Within the NNPDF methodology various figures of merit are used, each of which can be used
in different situations. To avoid confusion, it is important to understand the differences
between the various figures of merit, and to understand which definition we are referring to in
a given context. In particular, it is worth stressing that whenever a figure of merit is discussed,
Code for data: validphys the tp method (discussed below) applies.

From NNPDF2.0 onwards the t, formalism has been used to define the figure of merit used
during the fitting of the PDFs.

The tg method is not used by default in other validphys applications, and instead the
default is to compute the experimental xz. To compute xfﬂ, users need to specify

Getting started

Fitting code: n3fit

use_t@: True
tepdfset: <Some LHAPDF set>

in the relevant namespace. This will instruct actions such as
validphys.results.dataset_chi2_table() to compute the £y estimator.

hitps://docs.nnpdf.science/flguresofmerit/index.html, accessed on 2023-03-28

2023-03-29 P. Nadolsky, DIS'2023 workshop 16
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Systematic uncertainties and the bias-variance dilemma

Npt Ny
XZ = Z(Ti - Di)(COV_l)ij(Tj - Dj) (COV)UZ Sizaij + Z .Bi,a,Bj,a [ﬁi,a — O-i,aXi }
i,j a=1

D;, T;, s; are the central data, theory, uncorrelated error
P« = 0; o X; is the correlation matrix for N) nuisance parameters. Experiments publish g; , .

The “truth” normalizations X; in the experiment are of order T; or D;. {X;} are learned as a model {X;} together
with PDFs f and theory {T;(f)}. For example, we can sample as X; = a;D; + b;T;, with free 0 < a;,b; < 1.

Mean variation 8% of the model from truth on an ensemble of replicas, for data point i:

6% = <(Xi - Xi)2> = <(Xz - (Xi))2> + ((X; _Y<Xi))2) = <(Xl - (Xi))2> —{(D; = {X;)?) + {(D; — X;)?)

variance data bias x2(Dy,Ty)

model bias model bias

Experimental definition, X; = D;: <(Xl- — )?l-)2> = (X; - Dl-)2 =62
In general, not enough

t, definition, X; = t,.: <(Xi _ )?l.)2> = (X —to;)" = 52 information to compare
6p and 6,

2023-03-29 P. Nadolsky, DIS'2023 workshop 17
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According to the LR test, the NN4.0
analysis discards PDFs in the green
and blue regions based on the prior
probabilities and differences in the
likelihood definitions

The allowed regions will change for
the other acceptable y? definitions,
which exist in reflection of the bias-
variance dilemma
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Possible criticisms [see R. Ball et al., arXiv:2211.12961]
and our detailed response [arXiv: 2205.10444, version 5]

1. Criticism: hopscotch solutions are improbable according to the random resampling (“importance
sampling”) of fitted data with the fixed NNPDF4.0 training methodology.

Our response: Hopscotch solutions will be likely if the NN training methodology is varied. Experimental data
resampling does not account for methodology variations.

2. Criticism: hopscotch solutions fail smoothness conditions during NN4.0 replica training and are discarded.
Our response: Unclear how many of 2330+50 hopscotch solutions were tested by NNPDF. Most of

hopscotch solutions are sufficiently smooth upon a typical CTEQ-TEA examination and largely fall within
NNPDF4.0 uncertainty bands. Smoothness is not a sharply defined criterion, cf. the bias-variance dilemma.

3. Criticism: among the various prescriptions for approximating correlated systematic uncertainties in y?,
only t, prescription used for NNPDF replica training should be used for exploring the PDF uncertainty.

Our response: beyond relatively simple examples of D’Agostini’s bias explored by NNPDF [arXiv:0912.2276]
and others, there is no rigorous demonstration that a particular y? prescription is preferable.
Counterexamples exist. A variety of other y? prescriptions are used, cf. the bias-variance dilemma. NNPDF
continues to use the experimental y? prescription for PDF comparisons in the NN4.0 publication and NN4.0
validphys code [except during NN training].

2023-03-29 P. Nadolsky, DIS'2023 workshop 19
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Hopscotch NN4.0 replicas

LHAPDFG grids available at hitps://ct.hepforge.org/PDFs/2022hopscotich/
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for 50 EV directions _10f
-20 E%%
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2. A total 2329 PDF sets from hopscotch scans on NN replica 0
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7851

For 2 and y2,, definitions in the NNPDF4.0 A i
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Codes to generate LHAPDF grids for -
hopscotch replicas available by request.

P. Nadolsky, DIS'2023 workshop
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Smooth behavior
of most replicas

Hopscotch NN4.0 replicas

Error bands available at https://ct.hepforge.orq/PDFs/2022hopscotch/
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Scans of the log-likelihood in EV directions 25 and 33

20 8
10 ; 1
0
o NS O NNGORITOEY 3,
8 -6-4-20 2 0:
# of nominal standard deviations ~10 -
-20
30t T

-10-8 -6 -4 -2 0

# of nominal standard deviations

2023-03-29 P. Nadolsky, DIS'2023 workshop



Hopscotch replicas enlarge the error bands

(s-8)/(s+s) (x,Q) at Q=1.7 GeV (sym. er) xc (x,Q) at Q=1.7 GeV (sym. err)
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FIG. 9. Solid bands indicate the nominal 68% NNPDF4.0 uncertainties for strangeness asymmetry (left) and charm PDF
(right) at @ = 1.7 GeV. The alternative EV sets with AX?D = 0 are plotted as dashed lines.

Atx > 0.2, Q = Q, = 1.51 GeV, the HS replicas reduce significance of (s — 5)/(s + 3)

~ 50% (left) and c(x, Q) # 0 (right). This washes out the 3¢ evidence for the :
“intrinsic charm” stated in R. Ball et al., Nature 608 no. 7923, (2022) 483. Tim Hobbs, WG 1

2023-03-29 P. Nadolsky, DIS'2023 workshop 23



Epistemic PDF uncertainty:

Epistemic uncertainty (due to parametrization, methodology, parametrization/NN architecture,
smoothness, data tensions, model for syst. errors, ...) is increasingly important in NNLO global fits as
experimental and theoretical uncertainties decrease

Nominal PDF uncertainties in high-stake measurements (ATLAS W mass, Higgs cross sections...) thus
should be tested for robustness of sampling over acceptable methodologies and demonstrate absence

of biases in this sampling.

This is also necessary for combination of PDFs including data correlations
[LHC EW, Jet & Vector boson WGs, https.//tinyurl.com/4wend8xn; https://tinyurl.com/2p8d8ba3; https.//tinyurl.com/2p8tcn5b;
Ball, Forte, Stegeman, arXiv:2110.08274].

Such tests can be done outside of the PDF fits using hopscotch scans. [arXiv: 2205.10444, Sec. 2.].

The ambiguity due to the y? definition is significant. Publication of full likelihoods for experimental
systematic errors [Cranmer, Prosper, et al., arXiv:2109.04981] will suppress this ambiguity.

« Hopscotch scans were illustrated using the NNPDF4.0 public code and LHAPDF grids, and mp4lhc program.
» Impact on the uncertainties at small and large x, PDF ratios, fitted charm, ...
» Insights applicable to other analyses using a large parameter space — CT/MSHT tolerance, polarized PDFs, etc.

2023-03-29 P. Nadolsky, DIS'2023 workshop
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Backup

P. Nadolsky, DIS'2023 workshop
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...such as the LHC W mass and a, measurements

ATLAS-CONF-2023-004 ATLAS-CONF-2023-015

7 - The statistical analysis for the determination of as(mz) is performed with the xFitter framework [60].
PDEF-Set Pr [MeV | mt [MeV | combined [MeV | The value of ags(mz) is determined by minimising a y2 function which includes both the experimental
5 £+15.8 +24.4 z q+15.7 uncertainties and the theoretical uncertainties arising from PDF variations:
CTI0 80335.6_15_? 80378.175,¢ 8{}353.8_]5_?
CTIl4 80358.0’:1166'% 80388 83‘;2‘; 80358 .4J_r1]g‘_% X~ (Bexp: Bm) =
CTI8 80360.1%163 80382.2+233 | 80360.4+16-3 Nows (7 + 3 T5PBjexp — 01" — Ta TiBrn)
MMHT2014 | 80360.3*120  80386.2*37 |  80361.0*125 < A?
MSHT20 | 80358.9%130  80370.4*2%6 | 80356.3+14¢ +D Blap* k Bin- (M
NNPDF3.1 | 80344.7812¢  80354.3*35 | 80345.01133 :
NNPDF4.0 80342.2’:112'% 80354.33%‘_3 8{}342.9?]2‘_%

Table 2: Overview of fitted values of the W boson mass for different PDF sets.

The reported uncertainties are the total uncertainties.

2023-03-29

[T.J. Hou et al., 1912.10053, Appendix F]

P. Nadolsky, DIS'2023 workshop

profiling of CT and MSHT PDFs requires to include
a tolerance factor T2 > 10 as in the ePump code
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Computing uncertainty AX

1. By unweighted averaging of F —NNPDF4.0 MC 100 replicas
predictions for 100 (or 1000) MC 8650F —NNPDF4.0 MC 1000 replicas R
replicas: b —NNPDF40 Hessian R
Nrep — BG{}D;
1 E
) =1— > Xi; BX*=((X-(XD?) sl
Nrep . 3 C
i=1 [
R500F
(NNPDF calls it “importance sampling”. The R450F
MC replicas are distributed according to the LHC 14 Tev, 1o
fluctuated data [Ball:2011gg] using the same S15 820 8% 830 835 840 845

training algorithm). oz [pH]
Replica 0 is the mean of 1000 MC replicas; has better unfluctuated y? than MC replicas.

2. Using N,;; = 50 Hessian PDFs.

NNPDF4.0 MC and Hessian uncertainties are in a good agreement.

P. Nadolsky, DIS'2023 workshop 27
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Figures of merit in the NNPDF4.0 analysis |

1. x* with respect to the central experimental values

Npt
X’ = z(Ti — D;)(cov™1)(T; — D)
Ny, L
{CD‘J];:_;.' = 5-?51'?;?' + Z .Si:ﬂ,ﬁj',&-_» -’E?a — IE-r;r-i.*'..r_’t}fl-i_r'-
o=1

D;, T;, s; are the central data, theory, uncorrelated error
Bi« is the correlation matrix for Ny nuisance parameters.

Experiments publish o; ,. To reconstruct g; ,, we need to decide on the
normalizations X;.

NNPDF4.0 use:
a X;=D; . “experimental scheme”; can result in a bias
b. X; = fixed T; : “ty scheme”; can result in a (different) bias

P. Nadolsky, DIS'2023 workshop
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Figures of merit in the NNPDF4.0 analysis |l

Ny, : B 1{
(cov)i; = 5?%‘ + Z B0 35,00, Dia = Tia<Vi,
=1
NNPDF4.0 use:
a. X;=D; . experimental scheme; can result in a bias

b. X; = fixed T; : tp scheme; can result in a (different) bias

The conventions are neither complete nor unique. Ambiguity affects all groups.
See Appendix in 1211.5142.

2. NNPDF4.0 trains MC replicas with y? for fluctuated D;, t, scheme, and
replica selection (prior) conditions:

COSt=)(§O (Tir Difluctuated) + X;rior
3. NNPDF4.0 quotes the final unfluctuated y? in the “exp” scheme.

Experimental scheme: toz sclr\llem_e:l 233
X?ot/Npt = 1.160. ioe/ T |

x2(exp) — x%(ty) = —340 for 4618 data points

2023-03-29 P. Nadolsky, DIS'2023 workshop
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PRIOR PROBABILITY IN PDF FITS

v PDF fitting example of inverse problem: aim to find a posterior probability of f given the data D.

v Parametrization of PDFs: finite-dimensional problem.

fla) = f(z.0) e F
v The posterior probability for the parametrization depends on both the figure of merit that maximises the data

likelihood given the parameters and on prior probability H.

(M. Ubiali, HP2 2022 workshop, Durham, 2022-09-22)

P. Nadolsky, DIS'2023 workshop
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What, exactly, did HERA do for us?

Evidence for non-trivial small-x dynamics depends on the uncertainty definitions
Example: a future test in NNPDF4.0

Fig. 29 in 2109.02653 Historically, HERA was credited
. g at 1.65 GeV for establishing the fast small-x
7 pre-HERA (68 c.l.+10) growth of the gluon (hard
10 1 N pre-LHC (68 c.|.+10) pomeron), not reducing the
.. NNPDF4,0 (68 c.l.+10)
. | growth.
Z 6

Which view is right?
4 no overlap _—

datasets pre HERA
2 u 107 datasets pre LHC
NNNNNNN datasets

10°

10°

10*  10* 102 107! 10° )
X Ell)‘
A fit only to the pre-HERA DIS & DY data prefers fast
growth of the gluon at x = 0, possibly reflecting a
tension of BCDMS and NMC data. The growth is

10

reduced by including the HERA data.
P. Nadolsky, DIS'2023 workshop

T T T T T
107* 1072 1072 1072 10°
X
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Figure 6: The total virtual photon-proton cross section versus W2 for different (* values.
The cross section values obtained from the Fhy values described in this paper and the Fy values
from the 1993 data are shown in addition to data from previous low energy experiments
[B4]. The region to the right of the dashed line correspond to x < 1/(2m,R,). Also shoun
is the W? behaviour of the measured cross section for real photoproduction together with the

prediction of Donnachie and Landshoff [37] (solid line).

P. Nadolsky, DIS'2023 workshop

32



Xg(X)

Why doesn't NNPDF4.0 find HS solutions? |

g at 1.651 GeV
2.0 &
NMPDF4
1.51
1.04
0.5 4

0.0

_05_

1078 101 1076 104 1074
X

10-° 1072

NNPDF authors find that some HS
replicas fail the initial-stage

overfitting test
(M. Ubiali, HP2 2022 workshop, Durham,
2022-09-22)

2023-03-29

102

P. Nadolsky, DIS'2023 workshop
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NN40full 10 EV V

4 -3 -2 -1 0

-10¢
~20F

xg (X,Q) at Q=1.7 GeV (sym. err)
NNPDF4.0 NNLO 68% (solid), alt. (Ax?)10=0 (dashed)

T T T T T T T T T T TTT
6 _
Dashed: displaced EV sets with Ay2=0 1
4+ J
-alt EV4 > ]
2F ~ i
0—
P2
i alt EV1 |
10 10° 10 1073 0.010.020.05 0.1 0.2 0.50.7

X

HS solutions have much lower y? than
NN MC replicas. HS PDFs are outside the
50-dim neighborhood of NN replica 0. We
do not see evidence of “overfitting”
according to CT18 criteria.
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