Towards mini-global parton-branching TMD fits

H. Jung, S. Taheri Monfared, K. Wichmann

Parton Branching (PB) method

[Phys. Rev. D 100 (2019) no.7, 074027]
[Phys. Rev. D 100 (2019) no.7, 074027]
[Eur.Phys.J.C 82 (2022) 8, 755]
[Eur.Phys.J.C 82 (2022) 1, 36]
[Phys. Lett. B 822136700 (2021)]
[JHEP 09060 (2022)]

- Evolution of TMDs (and collinear PDFs) at LO, NLO \& NNLO
- Resummation of soft gluons at LL and NLL (at NLL identical to CSS approach)
- unique feature: backward evolution fully determines the TMD shower: consistently treats perturbative and non-perturbative transverse momentum effects
- PB TMDs together with PB TMD parton shower allow very good description of measurements over wide kinematic range
\rightarrow excellent description of the DY spectrum in a wide range of pT
\rightarrow also for jet multiplicity even much beyond reach of corresponding fixed-order calculation

Is there still any room for improvement? YES!

Motivation

NuSea data studied with PB PDFs
\rightarrow generally well described by PB-TMD + NLO calculation
[Eur.Phys.J.C 80 (2020) 7]
\rightarrow this deteriorates for region of highest masses

Why?

DY mass is sensitive to collinear PDFs.
we enter the large-x region where the PDF used in the calculation, which are determined from fits to HERA inclusive data, are poorly constrained.

Treatment?

It can be improved by including different data sets in fits to constrain PDFs at large-x.
NNPDF3.0 obtained from global fit that include NuSea data.

PB-Fitting procedure in a nutshell

- Two angular ordered sets with different choice of scale in α_{s} :
- set1: α_{s} (evolution scale)
- set2: α_{s} (transverse momentum): similar quality as the NLO + NNLL prediction in $p_{t}(z)$ description
- TMD parametrization:

$$
f_{0, b}\left(x, \mathbf{k}_{\mathbf{t}, 0}^{2}, \mu_{0}^{2}\right)=f_{0, b}\left(x, \mu_{0}^{2}\right) \cdot \exp \left(-\left|k_{\mathrm{T}, 0}^{2}\right| / 2 \sigma^{2}\right) \sigma^{2}=q_{s}^{2} / 2 \& q_{s}=0.5 \mathrm{GeV}
$$

Introducing "transverse momentum" instead of "evolution scale" suppresses further soft gluons at low kt.

Fitting procedure in a nutshell:

- parameterize collinear PDF at μ_{0}^{2}
- produce PB kernels for collinear \& TMD distributions to evolve them to $\mu^{2}>\mu_{0}^{2}$ [Eur. Phys. J. C 74, 3082 (2014)]
- perform fits to measurements using xFitter frame to extract the initial parametrization (with collinear coefficient functions at NLO)
- store the TMDs in a grid for later use in CASCADE3 [Eur. Phys. J. C 81, no.5, 425 (2021)]
- plot collinear and TMD pdfs within TMDPLOTTER [arXiv:2103.09741]

What data can help constraining quarks and gluons?

- Looking at various global fits lots of data can be added
- We start adding slowly additional data sets from HERA and CMS
\rightarrow Aiming for mini-global parton-branching TMD fits

We included some of the data sets already available in xFitter, taking care of TMD factorization.
HERA jets \rightarrow Better constrains on large-x gluon \rightarrow indirect information on gluon distribution and as CMS DY data +W asymmetries \rightarrow Better determination of quarks (strange sea).
Fixed target DY \rightarrow Better constrains on the large-x PDF behavior (sensitive to sea quark distributions)

Data samples used in mini-global fit

Dataset

HERA	HERA1+2 CCep
	HERA1+2 CCem
	HERA1+2 NCem
	HERA1+2 NCep 820
	HERA1+2 NCep 920
	HERA1+2 NCep 460
	HERA1+2 NCep 575
HERA	ZEUS inclusive dijet 98-00/04-07 data
	H1 low Q2 inclusive jet 99-00 data
	ZEUS inclusive jet 96-97 data
	H1 normalised inclusive jets with unfolding
	H1 normalised dijets with unfolding
	H1 normalised trijets with unfolding

$$
\begin{array}{ll}
\text { CC e+-p } & \text { Set } 1 \rightarrow \text { chi2 } 2 / \text { dof }=1858 / 1484=1.25 \\
\text { NC e+-p } & \text { Set } 2 \rightarrow \text { chi2 } / \text { dof }=1922 / 1484=1.29
\end{array}
$$

Total number of data point : 1501

FastNLO jets

FastNLO ep jets normalised

CDF Z rapidity 2010
D0 W el nu lepton asymmetry ptl 25 GeV
D0 Z rapidity 2007
NC ppbar
CC ppbar

E866, high mass
E866, mid mass
E866, low mass

LHC

CMS W muon asymmetry

CMS W muon asymmetry 8 TeV	CC pp
CMS 7 TeV Z Boson rapidity 2	NC pp
CMS 7 TeV Z Boson rapidity 3	
CMS 7 TeV Z Boson rapidity 4	
CMS 7 TeV Z Boson rapidity 5	liniglobal PB-Fit

HERAPDF2.0-like parameterisation

$$
x f(x)=A x^{B}(1-x)^{C}\left(1+D x+E x^{2}\right)
$$

\rightarrow Parameters obtained by parameterisation scan
\rightarrow additional parameters is required

$$
\begin{array}{lc}
x g(x)=A_{g} x^{B_{g}}(1-x)^{C_{g}}-\underline{A_{g}^{\prime} x B_{g}^{\prime}(1-x)^{C_{g}^{\prime}}} & \left(1+D_{g} x\right) \\
x u_{v}(x)=A_{u_{v}} x^{B_{u_{u}}}(1-x)^{C_{u_{u}}}\left(1+E_{u_{v}} x^{2}\right) & +D_{u_{v}} x \\
x d_{v}(x)=A_{d_{v}} x^{B_{d_{i}}(1-x)^{C_{d_{d}}}} & \left(1+D_{d_{v}} x\right) \\
x U(x)=A_{U} x^{B_{v}}(1-x)^{C_{U}}\left(1+D_{U} x\right) & N o D_{U} x+E_{U} x^{2} \\
x D(x)=A_{D} x^{B_{D}}(1-x)^{C_{D}} & \left(1+D_{D} x\right)
\end{array}
$$

Comparison of miniglobal sets

Collinear and PB set1 are very similar
Set2 has a very different gluon density coming from different scale of alpha_s
Differences are washed out at large scale

Comparison to jet data (examples)

Jets - very interesting results for set2 for low Q2 and low pt -and "low" means even Q2 around 5 GeV 2

Comparison to pp data (examples)

CMS DY Z mass peak

CMS W asymmetry 8 TeV

Fixed-target DY at high mass

PDF comparison (miniglobal \& HERA fits)

TMD comparison (miniglobal \& HERA fits)

Different kt behaviour obtained from collinear splitting functions + collinear pdf
Difference essentially in low kt region
At small $\mathrm{kt} \rightarrow$ few/no resolvable emissions \rightarrow starting distribution at x plays an important role.
At large $\mathrm{kt} \rightarrow$ Many emissions \rightarrow no sensitivity to PDFs x -density

Uncertainty bound on PDF

Smaller uncertainty!

Uncertainties are produced with replica method.

Does it work? Yes!

Shown PB-sets from mini-global fit were used to repeat previous studies where predictions were in general 10-20\% away from measurements

Summery \& out look

- PB method implemented in $\mathrm{xFitter} \rightarrow$ so far fits with HERA DIS
- Studies of other processes at HERA and LHC gives more information
- Miniglobal fit leads to
- better determination of PDFs
- Smaller uncertainty bands

backup

The PB evolution equations for TMD parton densities $\mathcal{A}_{a}\left(x, \mathbf{k}, \mu^{2}\right)$ are given by [16]

$$
\begin{aligned}
\mathcal{A}_{a}\left(x, \mathbf{k}, \mu^{2}\right)= & \Delta_{a}\left(\mu^{2}\right) \mathcal{A}_{a}\left(x, \mathbf{k}, \mu_{0}^{2}\right) \\
& +\sum_{b} \int \frac{d^{2} \mathbf{q}^{\prime} \Delta_{a}\left(\mu^{2}\right)}{\pi \mathbf{q}^{\prime 2}} \Delta_{a}\left(\mathbf{q}^{\prime 2}\right) \\
& \left(\mu^{2}-\mathbf{q}^{\prime 2}\right) \Theta\left(\mathbf{q}^{\prime 2}-\mu_{0}^{2}\right) \\
& \times \int_{x}^{z_{M}} \frac{d z}{z} P_{a b}^{(R)}\left(\alpha_{\mathrm{s}}, z\right) \mathcal{A}_{b}\left(\frac{x}{z}, \mathbf{k}+(1-z) \mathbf{q}^{\prime}, \mathbf{q}^{\prime 2}\right),
\end{aligned}
$$

