Towards mini-global parton-branching TMD fits

H. Jung, S. Taheri Monfared, K. Wichmann

Parton Branching (PB) method

[Phys. Rev. D 100 (2019) no.7, 074027] [Phys. Rev. D 100 (2019) no.7, 074027] [Eur.Phys.J.C 82 (2022) 8, 755] [Eur.Phys.J.C 82 (2022) 1, 36] [Phys. Lett. B 822 136700 (2021)] [JHEP 09 060 (2022)]

- Evolution of TMDs (and collinear PDFs) at LO, NLO & NNLO
- Resummation of soft gluons at LL and NLL (at NLL identical to CSS approach)
- unique feature: backward evolution fully determines the TMD shower: consistently treats perturbative and non-perturbative transverse momentum effects
- PB TMDs together with PB TMD parton shower allow very good description of measurements over wide kinematic range
 - \rightarrow excellent description of the DY spectrum in a wide range of pT
 - \rightarrow also for jet multiplicity even much beyond reach of corresponding fixed-order calculation

Is there still any room for improvement? YES!

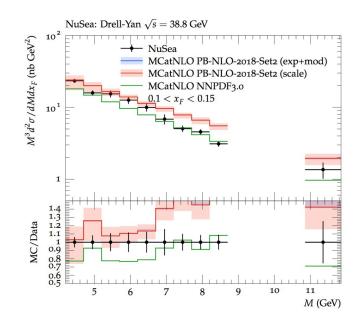
Motivation

NuSea data studied with PB PDFs

 \rightarrow generally well described by PB-TMD + NLO calculation

 \rightarrow this deteriorates for region of highest masses

Why?


DY mass is sensitive to collinear PDFs. we enter the large-x region where the PDF used in the calculation, which are determined from fits to HERA inclusive data, are poorly constrained.

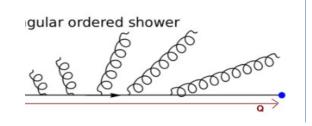
Treatment?

It can be improved by including different data sets in fits to constrain PDFs at large-x.

NNPDF3.0 obtained from global fit that include NuSea data.

[Eur.Phys.J.C 80 (2020) 7]

PB-Fitting procedure in a nutshell


- Two angular ordered sets with different choice of scale in α_s :
 - set1: α_s (evolution scale)
 - set2: α_s (transverse momentum): similar quality as the NLO + NNLL prediction in $p_t(z)$ description
- TMD parametrization:

$$f_{0,b}(x, \mathbf{k_{t,0}^2}, \mu_0^2) = f_{0,b}(x, \mu_0^2) \cdot \exp(-|\mathbf{k_{T,0}^2}|/2\sigma^2) \ \sigma^2 = q_s^2/2 \ \& \ q_s = 0.5 \ GeV$$

Fitting procedure in a nutshell:

- parameterize collinear PDF at μ_0^2
- produce PB kernels for collinear & TMD distributions to evolve them to $\mu^2 > \mu_0^2$ [Eur. Phys. J. C 74, 3082 (2014)]
- perform fits to measurements using xFitter frame to extract the initial parametrization (with collinear coefficient functions at NLO)
- store the TMDs in a grid for later use in CASCADE3 [Eur. Phys. J. C 81, no.5, 425 (2021)]
- plot collinear and TMD pdfs within TMDPLOTTER [arXiv:2103.09741]

Introducing "transverse momentum" instead of "evolution scale" suppresses further soft gluons at low kt.

S. Taheri Monfared

What data can help constraining quarks and gluons?

- Looking at various global fits lots of data can be added
- We start adding slowly additional data sets from HERA and CMS

 \rightarrow Aiming for mini-global parton-branching TMD fits

We included some of the data sets already available in xFitter, taking care of TMD factorization.

HERA jets \rightarrow Better constrains on large-x gluon \rightarrow indirect information on gluon distribution and α s CMS DY data + W asymmetries \rightarrow Better determination of quarks (strange sea). Fixed target DY \rightarrow Better constrains on the large-x PDF behavior (sensitive to sea quark distributions)

Data samples used in mini-global fit

Dataset

	Dataset	
HERA	HERA1+2 CCep HERA1+2 CCem HERA1+2 NCem HERA1+2 NCep 820 HERA1+2 NCep 920 HERA1+2 NCep 460 HERA1+2 NCep 575	
HERA	ZEUS inclusive dijet 98-00/04-07 data H1 low Q2 inclusive jet 99-00 data ZEUS inclusive jet 96-97 data H1 normalised inclusive jets with unfolding H1 normalised dijets with unfolding H1 normalised trijets with unfolding	
Tevatron	CDF Z rapidity 2010 D0 W el nu lepton asymmetry ptl 25 GeV D0 Z rapidity 2007 E866, high mass	
	E866, mid mass E866, low mass	
LHC S. Taheri Monfared	CMS W muon asymmetry CMS W muon asymmetry 8 TeV CMS 7 TeV Z Boson rapidity 2 CMS 7 TeV Z Boson rapidity 3 CMS 7 TeV Z Boson rapidity 4 CMS 7 TeV Z Boson rapidity 5	linic
5. Tallell Mollared		linig

Total number of data point : 1501

CC e+-p NC e+-p Set1 \rightarrow chi2/dof=1858/1484=1.25 Set2 \rightarrow chi2/dof=1922/1484=1.29

FastNLO jets

FastNLO ep jets normalised

NC ppbar CC ppbar

NC pp

CC pp NC pp

Miniglobal PB-Fit

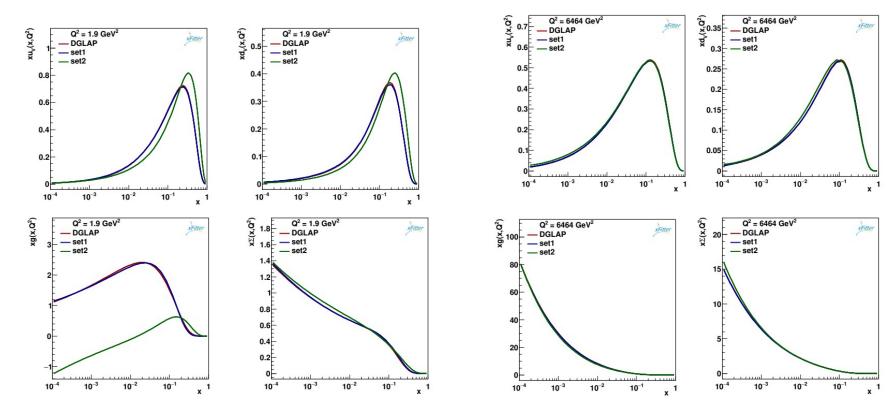
6

HERAPDF2.0-like parameterisation

$$xf(x) = A x^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

 \rightarrow Parameters obtained by parameterisation scan \rightarrow additional parameters is required

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - \underline{A'_{g}x}B'_{g}(1-x)^{C'_{g}} \qquad (1+D_{g}x)$$

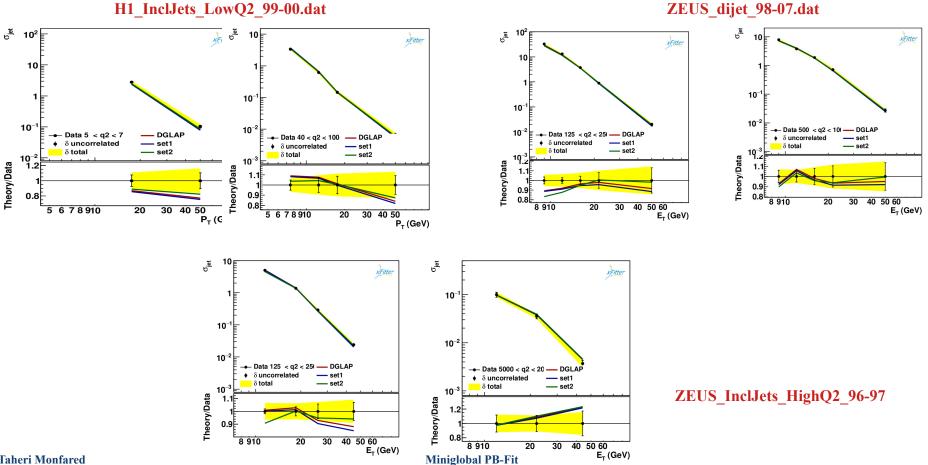

$$xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u}}(1+E_{u_{v}}x^{2}) \qquad +D_{u_{v}}x$$

$$xd_{v}(x) = A_{d_{v}}x^{B_{d}}(1-x)^{C_{d}} \qquad (1+D_{d_{v}}x)$$

$$xU(x) = A_{U}x^{B_{U}}(1-x)^{C_{U}}(1+D_{U}x) \qquad No D_{U}x \quad +E_{U}x^{2}$$

$$xD(x) = A_{D}x^{B_{D}}(1-x)^{C_{D}} \qquad (1+D_{D}x)$$

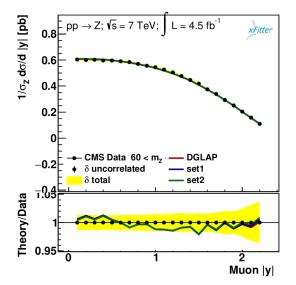
Comparison of miniglobal sets

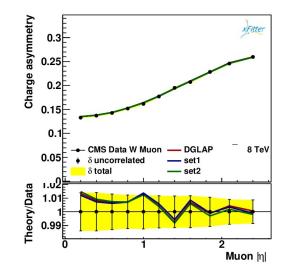


Collinear and PB set1 are very similar Set2 has a very different gluon density coming from different scale of alpha_s Differences are washed out at large scale

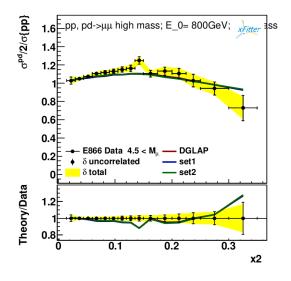
S. Taheri Monfared

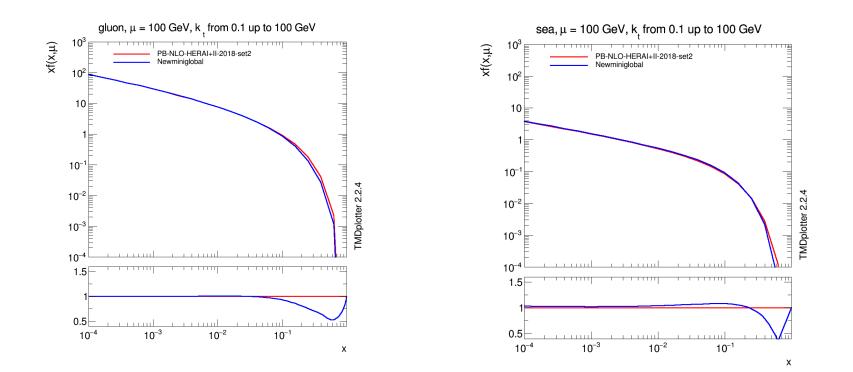
Comparison to jet data (examples)

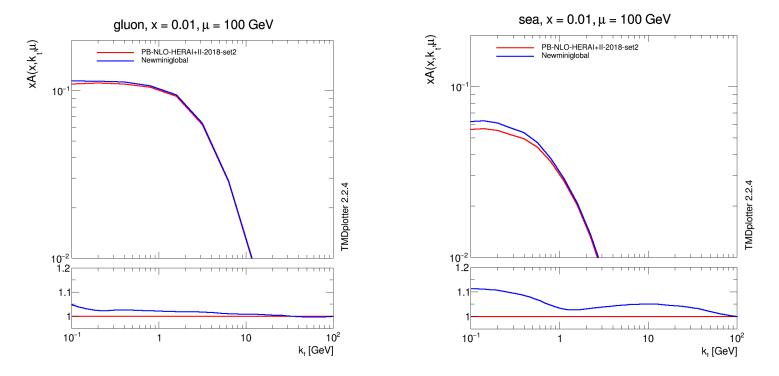

Jets – very interesting results for set2 for low Q2 and low pt –and "low" means even Q2 around 5 GeV2


S. Taheri Monfared

Comparison to pp data (examples)

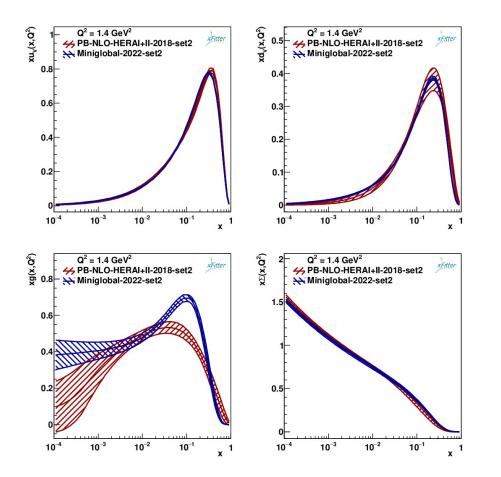

CMS DY Z mass peak


CMS W asymmetry 8 TeV


Fixed-target DY at high mass

PDF comparison (miniglobal & HERA fits)

TMD comparison (miniglobal & HERA fits)

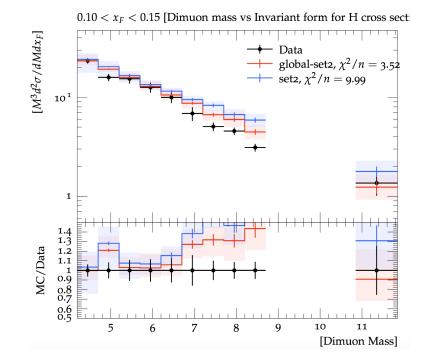

Different kt behaviour obtained from collinear splitting functions + collinear pdf Difference essentially in low kt region

At small $kt \rightarrow few/no$ resolvable emissions \rightarrow starting distribution at x plays an important role.

At large kt \rightarrow Many emissions \rightarrow no sensitivity to PDFs x-density

S. Taheri Monfared

Uncertainty bound on PDF


Smaller uncertainty!

Uncertainties are produced with replica method.

S. Taheri Monfared

Does it work? Yes!

Shown PB-sets from mini-global fit were used to repeat previous studies where predictions were in general 10-20% away from measurements

Summery & out look

- PB method implemented in xFitter \rightarrow so far fits with HERA DIS
 - Studies of other processes at HERA and LHC gives more information
- Miniglobal fit leads to
 - better determination of PDFs
 - Smaller uncertainty bands

S. Taheri Monfared

backup

The PB evolution equations for TMD parton densities $\mathcal{A}_a(x, \mathbf{k}, \mu^2)$ are given by [16]

$$\begin{split} \mathcal{A}_{a}(x,\mathbf{k},\mu^{2}) &= \Delta_{a}(\mu^{2})\mathcal{A}_{a}(x,\mathbf{k},\mu_{0}^{2}) \\ &+ \sum_{b} \int \frac{d^{2}\mathbf{q}'}{\pi \mathbf{q}'^{2}} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mathbf{q}'^{2})} \Theta(\mu^{2}-\mathbf{q}'^{2}) \Theta(\mathbf{q}'^{2}-\mu_{0}^{2}) \\ &\times \int_{x}^{z_{M}} \frac{dz}{z} P_{ab}^{(R)}(\alpha_{s},z) \mathcal{A}_{b}\left(\frac{x}{z},\mathbf{k}+(1-z)\mathbf{q}',\mathbf{q}'^{2}\right), \end{split}$$