Charge Symmetry Violation in the Valence Parton Distributions and Fragmentation Functions

Whitney Armstrong
Argonne National Laboratory
March 30, 2023

Introduction

What is Charge symmetry?

Charge symmetry (CS) is a specific rotation in isospin space. It is the invariance with respect to rotation of π about the T2 axis.

$$
\begin{array}{cc}
{\left[H, P_{C S}\right]=0} & P_{C S}|d\rangle=|u\rangle \\
P_{C S}=\exp (i \pi T 2) & P_{C S}|u\rangle=-|d\rangle
\end{array}
$$

Low Energy: CS in nuclei

CS operator interchanges neutrons and protons

- $p p$ and $n n$ scattering lengths are nearly the same
- $M_{n} \simeq M_{p}$
- $B\left(n,{ }^{3} H e\right) \simeq B\left(p,{ }^{3} H\right)$ and energy levels in other mirror nuclei are equal (to 1%)
- $m\left({ }^{3} \mathrm{He}\right) \simeq m\left({ }^{3} H\right)$

After electromagnetic corrections CS respected down to \sim 1\%

QCD: Quark level

- $u^{p}\left(x, Q^{2}\right)=d^{n}\left(x, Q^{2}\right)$
$d^{p}\left(x, Q^{2}\right)=u^{n}\left(x, Q^{2}\right)$
- Origin of CS violations:
\rightarrow Electromagnetic interaction
$\rightarrow \delta m=m_{d}-m_{u}$
Naively, one would expect CSV would be on the order of $\left(m_{d}-m_{u}\right) /\langle M\rangle$, where $\langle M\rangle$ is roughly $0.5-1.0 \mathrm{GeV}$
\rightarrow CSV effect about 1%

Motivation

- Charge symmetry violation is an important ingredient for pushing the precision frontier in the partonic structure of the nucleon
- Charge symmetry is often assumed in extracting PDFs from data - where the data is limited in sensitivity to CS violation
- The validity of charge symmetry is a necessary condition for many relations between structure functions and sum rules
- Flavor symmetry violation extraction $\bar{u}(x) \neq \bar{d}(x)$ relies on the implicit assumption of charge symmetry (in the sea quarks)
- Charge symmetry violation viable part of explanation for the anomalous value of the Weinberg angle extracted by NuTeV experiment
- CSV is related to our understanding of the flavor dependence of the quark masses (one of the key unsolved problems in Physics -
why is $m_{d} \sim m_{u} \neq m_{s} \neq m_{c} \neq m_{b} \neq m_{t}$)

Upper Limits on CSV

Theoretical Limits

Charge Symmetry Violation

$$
\operatorname{CSV}(x)=\delta d-\delta u \neq 0 \quad \text { where } \quad \begin{aligned}
& \delta u(x)=u^{p}(x)-d^{n}(x) \\
& \delta d(x)=d^{p}(x)-u^{n}(x)
\end{aligned}
$$

Model by Sather:

$$
\begin{gathered}
\delta d(x) \sim 2-3 \%, \delta u(x) \sim 1 \% \\
\delta d_{v}(x)=-\frac{\delta M}{M} \frac{d}{d x}\left[x d_{v}(x)\right]-\frac{\delta m}{M} \frac{d}{d x} d_{v}(x) \\
\delta u_{v}(x)=\frac{\delta M}{M}\left(-\frac{d}{d x}\left[x u_{v}(x)\right]+\frac{d}{d x} u_{v}(x)\right)
\end{gathered}
$$

where M is the $\mathrm{n}-\mathrm{p}$ mass difference,
$\delta M=1.3 \mathrm{MeV}$, and $\delta m=m_{d d}-m_{u u} \sim 4 \mathrm{MeV}$
is the down-up quark mass difference.
E. Sather, Phys. Lett. B274, 433 (1992)

Model by Rodionov, Thomas and Londergan $\delta d(x)$ could reach up to 10% at high x

E. N. Rodionov, A. W. Thomas and J. T. Londergan, Mod. Phys. Lett. A 9, 1799 (1994)

Upper Limits on CSV

Phenomenological limits

Using the uncertainties in PDFs studied by MRST Group, CSV is constrained to less than 9%

The MRST group has included CSV in a phenomenological evaluation of PDFs. They used a wide range of high-energy data to get a global fit of PDFs Eur. Phys. J.35(2004)325

Upper Limits on CSV

Lattice QCD

The charge symmetry violation via lattice simulation:

$$
\begin{aligned}
& \delta U=\int_{0}^{1} d x x \delta u(x)=0.0023(7) \\
& \delta D=\int_{0}^{1} d x x \delta d(x)=0.0017(4)
\end{aligned}
$$

The dash-dotted, dashed and solid curves represent pure QED, pure QCD and the total contributions. The results is comparable to the MRST prediction.
Physics Letters B, 753:595-599

Upper Limits on CSV

Experimental Limits

- Upper limit obtained by combining neutral and charged current data on isoscaler targets
- $F_{2 \nu}$ by CCFR collaboration at FNAL (Fe data)
- $F_{2 \gamma}$ by NMC collaboration using muons (D target)
- $0.1 \leq x \leq 0.4 \rightarrow \mathbf{9 \%}$ upper limit for CSV effect!

"Charge Ratio"

$$
\begin{aligned}
R_{c}(x) & =\frac{F_{2}^{\gamma}(x)+x[s(x)+\bar{s}(x)-c(x)-\bar{c}(x)] / 6}{5 \bar{F}_{2}^{W(x)} / 18} \\
& \simeq 1+\frac{3(\delta u(x)+\delta \bar{u}(x)-\delta d(x)-\delta \bar{d}(x))}{10 \bar{Q}(x)} \\
\bar{Q}(x) & =\sum_{u, d, s}(q(x)+\bar{q}(x))
\end{aligned}
$$

Londergan and Thomas, Progress in Nuclear and Particle Physics 41 (1998) 49-12

SIDIS Formalism

Charge Symmetry Violation

In the PDFs:

$$
\begin{gathered}
\delta d(x)=d^{p}(x)-u^{n}(x), \delta u(x)=u^{p}(x)-d^{n}(x) . \\
\operatorname{CSV}(x)=\delta d-\delta u
\end{gathered}
$$

In Fragmentation Functions

$$
\delta D(z)=\frac{D_{u}^{\pi^{+}}-D_{d}^{\pi^{-}}}{D_{u}^{\pi^{+}}}
$$

Leading order methodology for iso-scaler targets (Londergan, Pang, and Thomas PRD54(1996)3154)

$$
\begin{equation*}
R_{m e a s}^{D}(x, z)=\frac{4 N^{D \pi^{-}}(x, z)-N^{D \pi^{+}}(x, z)}{N^{D \pi^{+}}(x, z)-N^{D \pi^{-}}(x, z)}=\frac{4 R_{Y}(x, z)-1}{1-R_{Y}(x, z)} \tag{1}
\end{equation*}
$$

where $N^{D \pi^{ \pm}}(x, z)$ is the measured yield of $\pi^{ \pm}$electroproduction on a deuterium target, $R_{Y}=N^{D \pi^{-}} / N^{D \pi^{+}}$is the yield ratio, and we rely the following:

Factorization

$$
N^{\mathrm{N} h} \propto \sum_{i} e_{i}^{2} q_{i}^{\mathrm{N}}(x) D_{i}^{h}(z)
$$

Impulse Approximation

$$
N^{D \pi^{ \pm}}(x, z)=N^{p \pi^{ \pm}}(x, z)+N^{n \pi^{ \pm}}(x, z)
$$

CSV in the Valence Region

Leading order experimental analysis \rightarrow will need higher order global analysis

Londergan, Pang and Thomas PRD54(1996)3154

$$
D(z) R(x, z)+A(x) C S V(x)+F(z) \delta D(z)=B(x, z)
$$

$$
\begin{aligned}
& D(z)=\frac{1-\Delta(z)}{1+\Delta(z)}, \Delta(z)=\frac{D_{u}^{\pi^{-}}(z)}{D_{u}^{\pi^{+}}(z)} \\
& \operatorname{CSV}(x)=\delta d-\delta u \\
& R(x, z)=\frac{5}{2}+R_{\text {meas }}^{D} \\
& A(x)=\frac{-4}{3\left(u_{v}+d_{v}\right)} \\
& F(z)=\frac{4+\Delta(z)}{3\left(1-\Delta^{2}(z)\right)} \\
& \begin{array}{r}
B(x, z)=\frac{5}{2}+R_{\text {sea_S }}^{D}(x, z)+R_{\text {sea_NS }}^{D}(x) \\
R_{\text {sea }}^{N S}(x)=\frac{5\left(\bar{u}^{p}(x)+\bar{d}^{p}(x)\right.}{\left[u_{v}^{p}(x)+d_{v}^{p}(x)\right]}
\end{array} \\
& R_{s e a_{S}}^{D}(x, z)=\frac{\Delta_{s}(z)[s(x)+\bar{s}(x)] /(1+\Delta(z))}{\left[u_{v}^{p}(x)+d_{v}^{p}(x)\right]} \\
& \Delta_{s}(z)=\frac{D_{s}^{-}(z)+D_{s}^{+}(z)}{D_{u}^{+}(z)} \\
& A(x) \text { and } B(x, z) \text { are computed from PDF and FF fits }
\end{aligned}
$$

CSV

Extract simultaneously $\mathrm{D}(\mathrm{z})$ and $\operatorname{CSV}(\mathrm{x})$ from each $\left(Q^{2}, x\right)$ setting

Experiment in Hall C - E12-09-002

Measurements: $\mathrm{D}\left(e, e^{\prime} \pi^{+}\right)$and $\mathrm{D}\left(e, e^{\prime} \pi^{-}\right)$

Setup

Assuming $\delta D(z)=0$, for each Q^{2} we have 16 equations and 8 unknowns: $D\left(z_{j}\right)$ and $C S V\left(x_{i}\right)$

$$
D(z) R(x, z)+A(x) C S V(x)=B(x, z)
$$

Experiment E12-09-002

Kinematic Coverage

Charge Symmetry Violating Quark Distributions via Precise Measurement of π^{+} / π^{-}Ratios in Semi-inclusive Deep Inelastic Scattering.

$$
W^{\prime 2}=M^{2}+Q^{2}(1-z)(1 / x-1)
$$

Measured Yields

Radiative Corrections and Background Subtractions

Looking at a single setting:
$\langle x\rangle=0.35,\left\langle Q^{2}\right\rangle=4 \mathrm{GeV}^{2},\langle z\rangle=0.4$

Backgrounds

- $Y_{\text {Dummy }}$: Target window subtraction from dummy target
- $Y_{\text {exc }}$: Exclusive radiative tail
- $Y_{\Delta}: \Delta$ production background
- Y_{ρ} : Symmetric ρ production background $\rho \rightarrow \pi^{+} \pi^{-}$
The dominant systematic the uncertainty
Radiative corrections
$\mathrm{R}_{\mathrm{c}}=\frac{Y_{\text {norad }}}{Y_{\text {rad }}+Y_{\text {exc }}+Y_{\Delta}+Y_{\rho}}$
where $Y_{\text {rad/norad }}$ are simulated yields with radiative effects turned on/off.

$$
Y_{D}(x, z)=R_{c}\left(Y_{\mathrm{corr}}^{D}-0.245 Y_{\text {Dummy }}\right)
$$

$R_{\text {meas }}^{D}$ Results

$$
\begin{gathered}
D(z) R(x, z)+A(x) C S V(x)=B(x, z) \\
R(x, z)=\frac{5}{2}+R_{\text {meas }}^{D}(x, z)
\end{gathered}
$$

$R_{\text {meas }}^{D}(x, z)$ for $Q^{2}=4 \mathrm{GeV}^{2}$ bin projected on z axis. $R_{\text {meas }}^{D}(x, z)=\frac{4 R_{Y}(x, z)-1}{1-R_{Y}(x, z)}$

Simultaneous Extraction of $\Delta(z)$ and $C S V(x)$

Fragmentation ratio and valence CSV parton distribution

Four parameter fit

$$
\begin{aligned}
\Delta(z) & \equiv \frac{D_{u}^{\pi^{-}}(z)}{D_{u}^{\pi^{+}}(z)}=z^{\alpha}(1-z)^{\beta} \\
C S V x & \equiv \delta d-\delta u=x^{a}(1-x)^{b}(x-c)
\end{aligned}
$$

c is determined from the constraint: $\int_{0}^{1} \operatorname{CSV}(x) d x=0$

$$
\begin{gathered}
c=\frac{\int_{0}^{1} x^{(a+1)}(1-x)^{b}}{\int_{0}^{1} x^{a}(1-x)^{b}}=\frac{B(a+2, b+1)}{B(a+1, b+1)}, B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
R_{f i t}^{D}(x, z)=\frac{B(x, z)-A(x) C S V(x)}{D(z)}-\frac{5}{2}
\end{gathered}
$$

Results after standard ρ background subtraction

$$
\Delta(z) \equiv D_{u}^{\pi^{-}}(z) / D_{u}^{\pi^{+}}(z)=z^{\alpha}(1-z)^{\beta}
$$

$$
C S V x \equiv \delta d-\delta u=x^{a}(1-x)^{b}(x-c)
$$

The data points on the right are plotted using the extracted $\Delta, R_{m e a s}^{D}(x, z)$, and the equation below

$$
\operatorname{CSV}(x)=\frac{B(x, z)-D(z) R(x, z)}{A(x)}
$$

Preliminary $R_{\text {meas }}^{D}$

$$
D(z)\left[\frac{5}{2}+R_{\text {meas }}^{D}(x, z)\right]+A(x) C S V(x)=B(x, z)
$$

$$
\leftarrow \quad R_{\text {meas }}^{D}(x, z)=\frac{4 N^{D \pi^{-}}(x, z)-N^{D \pi^{+}}(x, z)}{N^{D \pi^{+}}(x, z)-N^{D \pi^{-}}(x, z)} \quad \text { Model inputs: }
$$

$$
A(x)=\frac{-4}{3\left(u_{v}+d_{v}\right)}
$$

$$
B(x, z)=\frac{5}{2}+R_{\text {sea_- }_{-}}^{D}(x, z)+R_{\text {sea- } a_{-} S}^{D}(x)
$$

From Shuo Jia

Using Fragmentation Functions from Global Fits

Directly compute $C S V(x)$ from data

$$
\begin{aligned}
\operatorname{CSV}(x) & =\frac{B(x, z)-D(z) R(x, z)}{A(x)} \\
D(z) & =\frac{1-\Delta(z)}{1+\Delta(z)} \\
\Delta(z) & =D_{u}^{\pi^{-}}(z) / D_{u}^{\pi^{+}}(z)
\end{aligned}
$$

Where is the CS violation?

- Using FFs without CSV there is a tension with previous analyses/limits
- Insufficient ρ background subtraction
- High order corrections
- FFs with CSV lead to much better agreement with
$\rightarrow \mathrm{CSV}$ in FFs

JAM PDFs and FFs

JAM PDFs and DSS FFs

Factorization

Charge Ratio Sum and Differences

Ratios should not depend on z.

$$
\frac{\sigma_{p}^{\pi^{+}}+\sigma_{p}^{\pi^{-}}}{\sigma_{d}^{\pi^{+}}+\sigma_{d}^{\pi^{-}}}=\frac{4 u+4 \bar{u}+d+\bar{d}}{5(u+\bar{u}+d+\bar{d})}
$$

Factorization

Charge Ratio Sum and Differences

$$
\frac{\sigma_{p}^{\pi^{+}}-\sigma_{p}^{\pi^{-}}}{\sigma_{d}^{\pi^{+}}-\sigma_{d}^{\pi^{-}}}=\frac{4 u_{v}(x)-d_{v}(x)}{3\left(u_{v}()+d_{v}(x)\right)}=R^{-} \quad \frac{d_{v}}{u_{v}}=\frac{4-3 R^{-}}{3 R^{-}+1}
$$

Ratios should not depend on z.

Previous $6-\mathrm{GeV}$ era JLab experiment in Hall-C observed nearly z-independent ratio. JLab E00-108: PRC 85, 015202 (2012)

Summary

- Conducted precision semi-inclusive measurements of the π^{-} / π^{+}ratio on a deuterium target
- Extracted the LO valence CSV parton distribution and fragmentation function ratio
- Using different FF models input suggests a CSV contribution from the fragmentation functions should be considered in a global analysis
- Results for the CSV parton distribution are consistent with MRST limits.
- Some CSV in the fragmentation functions improves shapes of fits and leads to good agreement with nominal ρ BG subtraction

CSV in Fragmentation Function

2007 HKNS - no CSV 2007 DSS - CSV
2014 DEHSS - no CSV
2017 NNFF - CSV
2020 JAM - no CSV
2021 MAPFF - CSV

Update to DSS, DEHSS finds $\delta D=0$.

Kaon/Pion Ratio

$$
R_{K / p i}=\frac{N_{a n t i H G C}^{K}}{N_{\text {withHGC }}^{\pi}+N_{a n t i H G C}^{\pi}}
$$

One point for each Run-group, plotted as a function of momentum.
The kaon to pion ratio increases with high momentum, which is higher z. There are more K^{+}than K^{-}

H_{2} runs results

H_{2} runs are taken for some kinematic to test the assumption of factorization.

$$
\frac{\sigma_{p}^{\pi^{+}}-\sigma_{p}^{\pi^{-}}}{\sigma_{d}^{\pi^{+}}-\sigma_{d}^{\pi^{-}}}=\frac{4 u_{v}-d_{v}}{3\left(u_{v}+d_{v}\right)}
$$

$$
\frac{\sigma_{p}^{\pi^{+}}+\sigma_{p}^{\pi^{-}}}{\sigma_{d}^{\pi^{+}}+\sigma_{d}^{\pi^{-}}}=\frac{4 u+4 \bar{u}+d+\bar{d}}{5(u+\bar{u}+d+\bar{d})}
$$

Charge Symmetry in QPM

Charge-conjugation symmetry
Relates quarks and anti-quarks
$D_{\bar{u}}^{\pi^{ \pm}}=D_{\bar{u}}^{\pi^{\mp}}$
$D_{\bar{d}} \bar{\pi}^{ \pm}=D_{\bar{d}}^{\pi^{+}}$

Charge Symmetry

$$
\begin{array}{ll}
D_{u}^{\pi^{+}}=D_{d}^{\pi^{-}} & D_{\bar{u}}^{\pi^{+}}=D_{\bar{d}}^{\pi^{-}} \\
D_{d}^{\pi^{+}}=D_{u}^{\pi^{-}} & D_{\bar{d}}^{\pi^{+}}=D_{\bar{u}}^{\pi^{-}}
\end{array}
$$

$$
\begin{aligned}
S_{G} & =\int_{0}^{1} d x\left[\frac{F_{2}^{p}-F_{2}^{n}}{x}\right] \\
& =\frac{1}{3}+\frac{2}{9} \int_{0}^{1} d x\left[4 \bar{u}^{p}+\bar{d}^{p}-4 \bar{u}^{n}-\bar{d}^{n}\right] \\
& \stackrel{\text { CS }}{=} \frac{1}{3}+\frac{2}{3} \int_{0}^{1} d x\left[\bar{u}^{p}-\bar{d}^{p}\right]
\end{aligned}
$$

Londergan and Thomas. Prog. Part. Nucl. Phys. 41 (1998) 49-124

