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• Deeply-inelastic scattering (DIS)

• Key process for studying the structure of 
hadrons

• Backbone of global analyses of parton 
distribution functions (PDFs)

• DIS off nucleons and nuclei will be at the 
forefront again with high precision studies at 
the EIC, future neutrino facilities, … 

• Target mass corrections (TMC) to DIS structure 
functions

• Improve description of high-x/low-Q DIS 
data

• More precise data in this region will provide 
important tests of QCD

• Timely to review again with particular focus 
on nuclear targets

Introduction

J. Phys. G: Nucl. Part. Phys. 35 (2008) 053101 Topical Review

Figure 9. Comparison of the F2 structure function, with and without target mass corrections, and
NuTeV data [64]. The base PDF set is CTEQ6HQ [7].

(which is described by pQCD) from the target mass contributions is good to all orders in αs ,
since equation (23) is valid to all orders. Comparisons of the results from the two techniques
could help resolve any possible mixing between contributions from TMCs, higher twists, and
those from higher order pQCD terms. Such an unfolding procedure has been undertaken [66]
for the world data set of charged lepton scattering data from the proton, and the results are
currently being prepared for publication.

In this study the F2 data were fitted globally for 0.5 < Q2 < 250 GeV2 by allowing for
a Q2 dependence of the parameters describing F

(0)
2 (x). The results for Q2 = 3 (top panel)

and 20 GeV2 (bottom panel) are shown in figure 10. The solid curve is the F
(0)
2 determined

from the fit, while the dashed curve is the full F TMC
2 . Consistent with the determination from

PDF fits previously discussed, the TMC contributions to F2 are large at small Q2, as much as
9% even at x = 0.4 for Q2 = 3 GeV2. While the TMCs become much smaller at higher Q2,
they are still sizable at higher x, as can be seen in the inset in figure 10 (bottom panel). At
Q2 = 20 GeV2 the contributions from TMCs are 4%, 8% and 14% at x = 0.65, 0.70 and 0.75,
respectively.

It is interesting to note that even in kinematic regions where the TMCs are large, the
unfolding procedure gives results for the target mass contributions which are quite consistent
with that determined by inserting existing CTEQ6 PDFs into the master equation for F2. This
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• Operator Product Expansion (OPE)

• Georgi, Politzer ’76: LO QCD

• Barbieri et al ‘76: LO+including quark masses

• De Rujula, Georgi, Politzer ‘77: NLO QCD

• Parton model

• Ellis, Furmanski, Petronzio ‘83: LO+partonic transverse momentum ( ) 
Agreement of non-collinear parton approach with OPE at LO shown!

• Aivazis, Collins, Olness, Tung ‘93:  TMCs in collinear parton model ( )

• Theory not carved in stone! 

• OPE proven only for simple scalar models

• Non-collinear parton model not covered by QCD factorisation theorems

• Threshold problem: TMC corrected structure functions do not vanish for .

kT ≠ 0

kT = 0

x → 1

Two major theoretical approaches to DIS
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Master formula

• Nucleon mass 

• Nachtmann variable , 

•  standard parton model structure functions with 

•  convolution integrals over 

• Modular, easy to use (organising the rather complicated expressions in the OPE literature)

• Valid to any order in , quark masses included in ,  valid for nucleons and nuclei!

MN

ξN = 2xN /(1 + rN) rN = 1 + 4x2
NM2

N /Q2

FA,(0)
i MN = 0

hA
i , gA

i FA,(0)
i

αs FA,(0)
i

IS et al, A review of TMC, arXiv:0709.1775
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• Reconsider TMC from OPE with particular focus on nuclear case


• Attention to notation exhibiting kinematics


• Consider conditions of light cone dominance for nuclei


• Consider spin of target nucleus which can be different from spin-1/2 of nucleons


• Present derivation of TMCs from OPE in much greater detail


• Prove validity of TMC master equation for nuclei  
(Why does the nucleon mass  appear and not ?)


• Consider full nuclear target: 


• No use of nucleonic degrees of freedom


• Proper theoretical definition of nuclear structure functions and PDFs as they are intuitively 
used in the literature


• Parametrization of TMC accurate at the sub-percent level. 
Useful to calculate TMC to structure functions with any PDF set

MN MA

New review 2301.07715 
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Summary table of key relations:

Nucleus A Nucleon N

MA = AMN MN =MA�A

pA = ApN pN = pA�A

xA =
Q

2

2pA⋅q ≡ xN �A xN =
Q

2

2pN ⋅q ≡ AxA

xA ∈ [0,1] xN ∈ [0,A]

W 2

A
= (pA + q)

2 W 2

N
= (pN + q)

2

⌫A = (q ⋅ pA)�MA ≡ ⌫N ⌫N = (q ⋅ pN)�MN ≡ ⌫A

yA = ⌫A�E ≡ yN yN = ⌫N �E ≡ yA

Nachtmann Variable & Hadronic Mass

rA =

�

1 +
4x2

AM2
A

Q2 ≡ rN rN =

�

1 +
4x2

NM2
N

Q2 ≡ rA

⇠A = RMxA ≡ ⇠N �A ⇠N = RMxN ≡ A ⇠A

⇠A ∈ [0,1] ⇠N ∈ [0,A]

Since rA = rN ≡ r, then RM =
2

1+rA,N

Also, ⇠A�xA = ⇠N �xN = RM =
2

1+r
We define " = (xM�Q).

Table 4.1: We summarize the key relations for a nucleus (A) and nucleon (N). We also find it convenient to
define " = (xM�Q); we omit the subscripts on " for brevity as (xAMA�Q) = (xNMN �Q). We caution that WA

and WN are not simply related, c.f., Sec. 5.4. Note, the target mass modifies the scaling variable via ⇠A = RM xA.
Additionally, we introduce the shorthand notation r = rA = rN .

4. Rescaling

In this section we introduce a rescaling between the nuclear and averaged nucleon kinematics. Many470

of the key relations are summarized in Table 4.1. We typically identify the nuclear variables with an
“A” subscript (xA, ⇠A, rA), and those of the nucleon with an “N ” subscript (xN , ⇠N , rN). Similarly,
the original nuclear structure functions are identified with a tilde (W̃ , F̃ ), while those re-scaled to the
kinematics of an averaged nucleon are without (W,F ).

– 19 –

Kinematic variable Description

⌫A =
q ⋅ pA
MA

lab
= E`1 −E`2

Lepton energy loss in the laboratory
(nucleon rest) frame

yA =
q ⋅ pA
k1 ⋅ pA

lab
=

⌫A
E`1

Inelasticity yA ∈ [0,1]

Q2
= −q2 > 0 Boson squared momentum transfer

xA =
Q2

2pA ⋅ q
=

Q2

2MA⌫A
Bjorken xA with xA ∈ [0,1]

W 2
= (pA + q)

2
=M2

A
+Q2

1 − xA

xA

Mass squared of the recoil system

s = (k1 + pA)
2
=

Q2

xA yA
+M2

A
+m2

`

Center of Mass System (CMS)
energy squared

Figure 1.1: We consider the basic charged current (V =W±) or neutral current (V ={�, Z}) lepton-nucleus
DIS process `1(k1) +A(pA)→ `2(k2) +X(pX) where the lepton can be a charged lepton (electron, muon)
or a neutrino ⌫e, ⌫µ, ⌫⌧ . The 4-momentum of the exchange boson is denoted q = k1 − k2, and p2A =M

2
A.

The starting point of our analysis is to consider the full nucleus as our target and apply only155

general symmetry principles, e.g., Lorentz invariance, in deriving nuclear structure functions and their
TMCs. This means that until Sec. 4 there is no reference to (or dependence on) nucleon degrees of
freedom. Furthermore, until Sec. 5 there is no reference to (or dependence on) partonic degrees of
freedom.2 To do this, we first outline in Sec. 2 key kinematic relations and definitions in DIS of a
lepton off a nucleus, `1(k1) +A(pA) → `2(k2) +X(pX). As depicted in Fig. 1.1, A is a nuclear target160

with mass number A, ` denotes either a charged lepton or neutrino, and X represents all final-state
hadrons. In Sec. 3, we discuss precisely the criteria for light-cone dominance in nuclear DIS, and then
present in Sec. 3.3 a formula for nuclear TMCs. The result is analogous to the nucleon case [60], but
expressed in terms of the nuclear scaling variable xA and the mass of the nucleus MA.

In Sec. 4, we go on to perform a rescaling in order to express our formula for nuclear TMCs to165

the more familiar averaged nucleon quantities xN = AxA and MN =MA�A. This is the key step that

2Explicitly, until Sec. 5 we consider operators and matrix elements derived from quark, antiquark, and gluon fields
but do not identify these as partons, nor identify structure functions as combinations of PDFs, i.e., the parton model.

– 5 –

Kinematics of lepton-nucleus DIS

 q = k1 − k2

p2
A = M2

A
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Cross section

20 Masses in deep inelastic scattering

=
d3l0

(2⇡)32E 0

l

dQ(n)
h (2.4)

has been used. Here, dQ(n)
h denotes n-particle phase space of the hadronic system.

In the single exchange boson approximation, the square of the matrix element can be

written as a contraction of a leptonic tensor Lµ⌫ with a hadronic tensor Wµ⌫ , see Fig. 2.2:

X

n

Z
|M|2dQ(n)

h =
e4

q4
Lµ⌫W

µ⌫4⇡ , (2.5)

where a sum/integration over the hadronic part of the phase space and a spin-average is

performed. Here the factor 4⇡ is a convention and is compensated in the definition of

l

p

l'γ
µ

γ
ν

l

p

pX

Q
2

Q
2

J
µ

J
ν

L
µν

W
µν

M M
*

Figure 2.2: The square of the matrix element as a contraction of a leptonic tensor with a
hadronic tensor.

the hadronic tensor as will be discussed below. Furthermore, the factor e4/q4 holds for

the case that the two exchange bosons in Fig. 2.2 are photons. In the general case of two

interfering exchange bosons B and B0, to be discussed below, this factor will have to be

modified in order to properly take into account the propagators and the couplings to the

leptonic and hadronic currents of the B and B0 gauge bosons.

The phase space for the outgoing lepton takes the following form in the variables x

and y
d3l0

(2⇡)32E 0

l

=
2S2y

(4⇡)2F
dxdy

Leptonic tensor
calculable in pert. theory 

Hadronic tensor
not calculabe in pert. theory

k1 k2

pA
pA

dσ ∼ Lμν W̃A
μν
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Hadronic tensor
by

W̃A

µ⌫
(pA, q) ≡

1

4⇡ �
d4z eiq⋅z�A(pA)�Jµ(z)�X(pX)��X(pX)�J⌫(0) �A(pA)� (2.7)

= −gµ⌫W̃1 +
pAµpA⌫

M2

A

W̃2 − i✏µ⌫⇢�
p⇢
A
q�

M2

A

W̃3

+
qµq⌫
M2

A

W̃4 +
pAµq⌫ + pA⌫qµ

M2

A

W̃5 +
pAµq⌫ − pA⌫qµ

M2

A

W̃6 . (2.8)

In Eq. (2.7), the normalization factor 1�(4⇡) is conventional and the sum and integral (� ) run over
all discrete and continuous configurations of X, implying that W̃A

µ⌫
(pA, q) is inclusive with respect to

X (see also Appendix A.2). We note that, although the targets considered in this work are nuclei, we245

refer to quantities such as that given in Eq. (2.7) as a hadronic tensors, in keeping with convention. For
a polarized target, the decomposition into structure functions takes on a more complicated structure,
see e.g. [29, 61, 72–75]. In Sec. 3.2 and Appendix A.5, we review the connection between the W̃i and
the internal structure of A.

Modern notation calls for using the structure functions F̃i rather than W̃i. The mapping between
the two sets of dimensionless structure functions is given by

�F̃1, F̃2, F̃3, F̃4, F̃5,6�

= �W̃1,
Q2

2xAM2

A

W̃2,
Q2

xAM2

A

W̃3,
Q2

2M2

A

W̃4,
Q2

2xAM2

A

W̃5,6� . (2.9)

The purpose of using F̃i is to factor out known dependence on Q2 and make more manifest the phe-250

nomena of scaling, i.e., that F̃i depend only on xA, a dimensionless quantity, up to small, logarithmic
QCD corrections. In the discussion that follows, we focus on F̃1, F̃2, and F̃3. However, we include
a detailed discussion of F̃4 and F̃5 in the Appendix. The structure functions F̃4 and F̃5 enter into
differential cross sections, but are suppressed by a factor O( m

2
`

MAE`
), where m2

`
is the lepton mass

squared, MA is the hadronic mass, and E` is the energy of one of the external leptons [54]. This255

suppression is a consequence of contracting the symmetric leptonic tensor Lµ⌫ with qµ (or q⌫), which
subsequently vanishes due to the conservation of weak currents by massless leptons. Notably, finite
lepton-mass effects could be measured in ⌫⌧ -DIS, such as at the SHIP, FASER, or SND@LHC detectors
at CERN [31, 76–78]. As for F̃6, which signifies charge-parity violation, the coefficient vanishes when
contracted with Eq. (2.6), hence it does not contribute to the cross-section.260

Considerations for Spin 1 and Greater

Contrary to a nucleon target with spin-1/2, nuclei can have spin-1 or greater. The case of a spin-1
nuclear targets in NC DIS with charged leptons has been discussed since the 80s[79]. At leading twist,
i.e., twist ⌧ = 2, the additional effects of scattering on a polarized spin-1 target reside in a single new
structure function b̃1(x). This structure function effectively measures the extent to which a target265

nucleus deviates from a trivial bound state of protons and neutrons. For the deuteron, it is expected
that b̃1 ≈ 0, but for other nuclei one could have b̃1 ∼ O(F̃1).

More generally, using gauge invariance and P- and T-invariance for the spin-1 case, the hadronic
tensor can be expressed in terms of eight independent structure functions, {F̃1, F̃2, b̃1,2,3,4, g̃1, g̃2}.
Similar results are found for the hadronic tensor of a (space-like) virtual photon target [80]. The270

functions F̃1, F̃2, g̃1, and g̃2 are analogous to the scaling structure functions of a spin-1/2 target.
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Most general form in terms of structure functions:
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4⇡ �
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A
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A
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A

W̃3
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A
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Hadronic tensor
by
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dσ|W4
∝ m2

l
dσ|W5

∝ m2
l

dσ|W6
= 0

Most general form in terms of structure functions:

Modern notation:

by
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(pA, q) ≡

1

4⇡ �
d4z eiq⋅z�A(pA)�Jµ(z)�X(pX)��X(pX)�J⌫(0) �A(pA)� (2.7)

= −gµ⌫W̃1 +
pAµpA⌫

M2

A

W̃2 − i✏µ⌫⇢�
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Master formula from OPE

12

Suppressing the Q2 dependence for brevity, one finds at twist ⌧ = 2 the following:
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Here, the functions h̃A
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The equation Eq. (3.23) does not assume or imply any Callan-Gross relation between F1 and F2.
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• Nucleus mass 

• Nachtmann variable , 

•  standard parton model structure functions with 

•  convolution integrals over 

• Same structure as master formula for nucleons. Detailed derivation.

MN

ξA = 2xA/(1 + rA) rA = 1 + 4x2
AM2

A /Q2

F̃A,(0)
i (xA, Q2) MA = 0

h̃A
i , g̃A

i F̃A,(0)
i



From nuclear to averaged nucleon kinematics

13

Summary table of key relations:

Nucleus A Nucleon N

MA = AMN MN =MA�A

pA = ApN pN = pA�A

xA =
Q

2

2pA⋅q ≡ xN �A xN =
Q

2

2pN ⋅q ≡ AxA

xA ∈ [0,1] xN ∈ [0,A]

W 2

A
= (pA + q)

2 W 2

N
= (pN + q)

2

⌫A = (q ⋅ pA)�MA ≡ ⌫N ⌫N = (q ⋅ pN)�MN ≡ ⌫A

yA = ⌫A�E ≡ yN yN = ⌫N �E ≡ yA

Nachtmann Variable & Hadronic Mass

rA =

�

1 +
4x2

AM2
A

Q2 ≡ rN rN =

�

1 +
4x2

NM2
N

Q2 ≡ rA

⇠A = RMxA ≡ ⇠N �A ⇠N = RMxN ≡ A ⇠A

⇠A ∈ [0,1] ⇠N ∈ [0,A]

Since rA = rN ≡ r, then RM =
2

1+rA,N

Also, ⇠A�xA = ⇠N �xN = RM =
2

1+r
We define " = (xM�Q).

Table 4.1: We summarize the key relations for a nucleus (A) and nucleon (N). We also find it convenient to
define " = (xM�Q); we omit the subscripts on " for brevity as (xAMA�Q) = (xNMN �Q). We caution that WA

and WN are not simply related, c.f., Sec. 5.4. Note, the target mass modifies the scaling variable via ⇠A = RM xA.
Additionally, we introduce the shorthand notation r = rA = rN .

4. Rescaling

In this section we introduce a rescaling between the nuclear and averaged nucleon kinematics. Many
of the key relations are summarized in Table 4.1. We typically identify the nuclear variables with an
“A” subscript (xA, ⇠A, rA), and those of the nucleon with an “N ” subscript (xN , ⇠N , rN). Similarly,
the original nuclear structure functions are identified with a tilde (W̃ , F̃ ), while those re-scaled to the
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Summary table of key relations:

Nucleus A Nucleon N

MA = AMN MN =MA�A

pA = ApN pN = pA�A

xA =
Q

2

2pA⋅q ≡ xN �A xN =
Q

2

2pN ⋅q ≡ AxA

xA ∈ [0,1] xN ∈ [0,A]

W 2

A
= (pA + q)

2 W 2

N
= (pN + q)

2

⌫A = (q ⋅ pA)�MA ≡ ⌫N ⌫N = (q ⋅ pN)�MN ≡ ⌫A

yA = ⌫A�E ≡ yN yN = ⌫N �E ≡ yA

Nachtmann Variable & Hadronic Mass

rA =

�

1 +
4x2

AM2
A

Q2 ≡ rN rN =

�

1 +
4x2

NM2
N

Q2 ≡ rA

⇠A = RMxA ≡ ⇠N �A ⇠N = RMxN ≡ A ⇠A

⇠A ∈ [0,1] ⇠N ∈ [0,A]

Since rA = rN ≡ r, then RM =
2

1+rA,N

Also, ⇠A�xA = ⇠N �xN = RM =
2

1+r
We define " = (xM�Q).

Table 4.1: We summarize the key relations for a nucleus (A) and nucleon (N). We also find it convenient to
define " = (xM�Q); we omit the subscripts on " for brevity as (xAMA�Q) = (xNMN �Q). We caution that WA

and WN are not simply related, c.f., Sec. 5.4. Note, the target mass modifies the scaling variable via ⇠A = RM xA.
Additionally, we introduce the shorthand notation r = rA = rN .
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of the key relations are summarized in Table 4.1. We typically identify the nuclear variables with an
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the original nuclear structure functions are identified with a tilde (W̃ , F̃ ), while those re-scaled to the
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4.1. Nuclear and Nucleon Kinematics

As can be seen from Eqs. (3.24) and (3.26), the M2j

A
terms are always accompanied by x2j

A
factors in x-

space. Furthermore, the structure functions F̃A,(0)
2

(xA) have their main support at7 xA = xN �A ∼ 1�A.
Therefore, we have effectively

M2j

A
x2j

A

Q2j
=
(M2j

N
A2j
)x2j

A

Q2j
=
M2j

N
x2j

N

Q2j
∼
M2j

N

Q2j
, (4.1)

where MN = MA�A is the (average) nucleon mass such that the terms with j > 0 in Eq. (3.20) are
suppressed for Q2

>M2

N
independent of the nuclear target.

We introduce the average nucleon momentum pN ∶= pA�A inside the nucleus and define a nucleon
scaling variable

xN =
Q2

2pN ⋅ q
= AxA , where xN ∈ [0,A] , (4.2)

in contrast to the original Bjorken variable

xA =
Q2

2pA ⋅ q
= xN �A , where xA ∈ [0,1] . (4.3)

Note that the original xA variable can be constructed directly from the external momenta of the
particles whereas the “averaged quantities” xN (and pN ) are not directly observable for nuclear targets
with A > 1.

Using MA = AMN , we find for the Nachtmann variable

⇠A =
2xA

1 +
�
1 + 4x2

A
M2

A
�Q2

=
1

A
⇠N (4.4)

with
⇠N =

2xN

1 +
�
1 + 4x2

N
M2

N
�Q2

. (4.5)

Conversely, the quantity RM , which relates the Bjorken x variable to the scaling variable ⇠ via ⇠ = RMx,
is the same for both the nucleus and nucleon case:

RM =
2

1 + rA
=

2

1 + rN
. (4.6)

This is because the quantity rA appearing in the master formula is also the same:

rA =
�

1 + 4x2

A
M2

A
�Q2 =

�

1 + 4x2

N
M2

N
�Q2 = rN . (4.7)

Hence, we have ⇠A = RMxA and ⇠N = RMxN , where RM takes the same value in both equations.

7Note that we have introduced the nucleon scaling variable xN = AxA; this will be discussed in detail throughout this
section. Although xN can in principle extend to xN = A, the dominant range of the kinematics is 0 ≤ xN � 1. Discussion
on the xN > 1 region are given in Sec. 5.5.
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The -terms are always  
Accompanied by  factors:

MA
xA

Rescaled structure functions:

4.2. Rescaled Structure Functions

Turning to the structure functions, we define a rescaled hadronic tensor via the relation

AWA

µ⌫
(pN , q) ∶= W̃A

µ⌫
(pA, q) , (4.8)

expressed in terms of rescaled structure functions:

FA

2
(xN ,Q2

) ∶= F̃A

2
(xA,Q

2
) , xNFA

1,3
(xN ,Q2

) ∶= xAF̃
A

1,3
(xA,Q

2
) . (4.9)

The general relations in Eq. (4.9) hold also for F̃4,5,6, both with and without TMCs, and for any value
of the twist. As we show below, they are consistent with the master formula for the target-mass-
corrected structure functions. Hence, the pattern of the master equations will be consistent between
the nucleus and nucleon.

Indeed, one easily finds from Eq. (3.25):

h̃A

2
(⇠A) = �

1

⇠A

duA

F̃A(0)
2
(uA)

u2

A

= A�
A

⇠N

duN

FA(0)
2
(uN)

u2

N

=∶ AhA

2
(⇠N) , (4.10)

h̃A

3
(⇠A) = �

1

⇠A

duA

F̃A(0)
3
(uA)

uA

= A�
A

⇠N

duN

FA(0)
3
(uN)

uN

=∶ AhA

3
(⇠N) , (4.11)

h̃A

5
(⇠A) = �

1

⇠A

duA

2F̃A(0)
5
(uA)

uA

= A�
A

⇠N

duN

2FA(0)
5
(uN)

uN

=∶ AhA

5
(⇠N) , (4.12)

h̃A

6
(⇠A) = �

1

⇠A

duA

F̃A(0)
6
(uA)

uA

= A�
A

⇠N

duN

FA(0)
6
(uN)

uN

=∶ AhA

6
(⇠N) , (4.13)

g̃A
2
(⇠A) = �

1

⇠A

duAh̃
A

2
(uA) =

1

A �
A

⇠N

duNAhA

2
(uN) =∶ g

A

2
(⇠N) . (4.14)

With these expressions, and using xN=AxA, ⇠N=A⇠A, rA=rN , MA=AMN , we obtain the master
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1
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duA
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(uA)
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A

⇠N

duN

FA(0)
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2F̃A(0)
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One easily finds for the convolution integrals:

With these expressions and  , , , xN = AxA ξN = AξA rA = rN MA = AMN

FA,TMC
1 (xN, Q2) = ( xN

ξNrN ) FA,(0)
1 (ξN, Q2) + ( M2

N x2
N

Q2r2
N ) hA

2 (ξN, Q2) + ( 2M4
N x3

N

Q4r3
N ) gA

2 (ξN, Q2)

FA,TMC
2 (xN, Q2) = ( x2

N

ξ2
Nr3

N ) FA,(0)
2 (ξN, Q2) + ( 6M2

N x3
N

Q2r4
N ) hA

2 (ξN, Q2) + ( 12M4
N x4

N

Q4r5
N ) gA

2 (ξN, Q2)

FA,TMC
3 (xN, Q2) = ( xN

ξNr2
N ) FA,(0)

3 (ξN, Q2) + ( 2M2
N x2

N

Q2r3
N ) hA

3 (ξN, Q2) + 0



Discussion

• Everything defined in terms of a nuclear state, QCD operators and a 
kinematics rescaling

• No use of nucleonic degrees of freedom was made

• Similarly, nuclear PDFs are introduced in the variable . 

• DGLAP and Sum rules in 

• Then, one can define the rescaling to the variable :  

• DGLAP and Sum rules in 

• Again no use of (bound) nucleon PDFs, just nuclear PDFs  
(which is what is determined by data!)

• The rescaling at the hadronic level and the parsonic level are fully consistent

xA

xA

xN
fA
i (xN)dxN := f̃ A

i (xA)dxA

xN



Which terms are included?

Twist=2
1 …
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( Q2
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( Q2
0

Q2 )
2

M2
N

Q2 ( Q2
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FA,TMC
i

FA,TMC
i

FA,TMC
i

F(0)
i
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• Master formula resums leading twist TMC to all orders in 
• Higher twist terms  not included where  is a hadronic scale 

(To be modelled separately)

(M2
N /Q2)n

(Q2
0 /Q2)n Q0



FTMC
i (xN, Q2)/FTMC,leading

i (xN, Q2)

17

• Ratios very insensitive to nuclear A except A=1 (dashed, dotted)
• Simple parametrization of full TMC for everybody to use in numerical 

calculations (see 2301.07715 for details)

Figure 7.3: Upper panels: We display the nuclear structure function ratios of FTMC
i �FTMC−Leading

i for selected
CC and NC processes for Q = {1.3,1.5,2,3,4,6} GeV (from top to bottom) vs. xN . Lower panels: We display the
variation of this ratio compared to the average variation as computed in Eq. (7.6) for Q = 2 GeV. In the top row we
show F2 results for (a) NC � exchange, (b) CC W+ exchange, and (c) CC W− exchange, and the bottom row shows F3

results for the same processes. In all panels, the proton is indicated with the black dashed line, and the neutron with
the blue dotted line. The narrow band of colored lines shows the various nuclear results.

reduces to the sub-percent level, and effectively vanish at Q = 6 GeV.

Nuclear A Dependence of Ratios: Having discussed the magnitude of the FTMC

i
�FTMC−Leading

i

ratios, we now examine the A dependence of these ratios. A distinctive feature of Fig. 7.3 is the
coalescence of the results into individual bands, and this suggests that the nuclear A dependence
of this ratio is minimal. [The proton and neutron ratios (shown as dashed and dotted black lines,
respectively), do not necessarily lie within the bands, and we will discuss these separately.] This
apparent universality of the full TMC/Leading-TMC ratios can be traced back to: i) the fact that this
ratio has only mild dependence on the underlying PDF, and ii) the fact that for nuclei, in the large x
region it is the average u + d (isoscalar) PDF that dominates this result.

One approach to understand these features is to consider the analytically computed upper bound
for these ratios. If we assume the structure functions are monotonically decreasing (an entirely
reasonable assumption in the large x region), it is possible to obtain the following constraints on
these ratios [60]:

FTMC

2

FTMC−leading
2

(x,Q2
) ≤ 1 + �

M

Q
�

2
6x⇠

r
(1 − ⇠) + �

M

Q
�

4
12x2⇠2

r2
(− ln ⇠ − 1 + ⇠) (7.5a)

FTMC

3

FTMC−leading
3

(x,Q2
) ≤ 1 − �

M

Q
�

2
2x⇠

r
ln ⇠ . (7.5b)

Note, these bounds have absolutely no dependence on the PDF. Here, we also explicitly see the powers
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• New review of TMC from OPE with particular focus on nuclear case [2301.07715]


• Attention to notation exhibiting kinematics


• Consider conditions of light cone dominance for nuclei


• Consider spin of target nucleus which can be different from spin-1/2 of nucleons


• Present derivation of TMCs from OPE in much greater detail


• Prove validity of TMC master equation for nuclei


• Consider full nuclear target: 


• No use of nucleonic degrees of freedom


• Proper theoretical definition of nuclear structure functions and PDFs as they are 
intuitively used in the literature


• Parametrization of TMC accurate at the sub-percent level. 
Useful to calculate TMC to structure functions with any PDF set

Summary 
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–Richard Feynman (modified)

“Yesterday’s sensation is today’s calibration and 
tomorrow’s backup slide” 



Light cone dominance of nuclear DIS

Re(x�1
A )

Im(x�1
A )

|xA| = 1

Figure 3.1: (Left) A contour (circle) along the radius of convergence of the time-ordered matrix element T̃A
µ⌫(pA, q)

in the complex (1�xA) plane for �∗A→ �∗A scattering. Branch cuts (sawtooth lines) are along the real axis at x−1A < 1
and x−1A > 1 lines. (Right) A deformation of the contour along the branch cuts with vanishing arcs.

scattering in the deeply inelastic limit,4

W̃A

µ⌫
(pA, q) =

1

4⇡ �
d4z eiq⋅z�A�J†

XAµ
(z) JXA⌫(0)�A� , (3.11)

which is equivalent to the expression in Eq. (2.7) of Sec. 2.2, and the time-ordered amplitude for virtual
Compton scattering process �∗A→ �∗A in the short-distance limit

T̃A

µ⌫
(pA, q) ≡� d4z eiq⋅z �A�T J†

Aµ
(z) JA⌫(0)�A� , (3.12)

= − gµ⌫�T̃A

1
+
pAµpA⌫

M2

A

�T̃A

2
− i✏µ⌫↵�

p↵
A
q�

M2

A

�T̃A

3

+
qµq⌫
M2

A

�T̃A

4
+
(pAµq⌫ ± pA⌫qµ)

M2

A

�T̃A

5,6
, (3.13)
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In Eq. (3.13), T̃A

µ⌫
(pA, q) is decomposed into coefficients of Lorentz structures in the same manner as

W̃A

µ⌫
(pA, q) in Eq. (2.8). As T̃A

µ⌫
(pA, q) is time ordered, the first (second) relation in Eq. (3.14) is for

DIS with (anti)particles. We assume here and below that the hadronic currents Jµ

A
and J⌫

A
are always370

renormalized objects in QCD.
The distinction between the short-distance limit and the DIS limit is important: In the DIS limit,
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) → ∞ while xA = (Q
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) → ∞ while

xA�Q is fixed, meaning that xA grows with (Q�MA); equivalently, the quantity (1�xA) is small with

4The subscripts XA on the vector currents Jµ, J⌫ are simply labels to denote the hadronic current that takes A to
X. The current is independent of states A,X but depends on whether the current is electromagnetic or weak.
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DIS limit:

half the Z boson mass, is needed to describe DIS data for 56Fe, or that Q� 180 GeV, which is beyond305

the top quark mass, is needed for 197Au.
To resolve this, we apply the arguments of Refs. [63, 64] for light-cone dominance in DIS with a

nucleon to the case of an arbitrary nucleus. Our goal is to identify the dominant contribution to the
Fourier integral in Eq. (2.7) in the deeply inelastic limit:

Q2
→∞, ⌫A →∞, such that

Q2

⌫A
= 2MAxA is fixed. (3.3)

Note that in terms of averaged nuclear quantities, Q2
�⌫A = Q

2
�⌫N = 2MAxA = 2MNxN . That is to310

say, a bigger nuclear mass MA is compensated by a smaller Bjorken variable xA such that the fixed
Q2
�⌫A is independent of the atomic number.
Following Refs. [63, 64], we examine W̃A

µ⌫
(pA, q) in Eq. (2.7), and identify the integration regions

that give rise to the dominant contributions. In the DIS limit of Eq. (3.3), as �q ⋅z�→∞ the exponential
of the Fourier integral oscillates without bound and thus makes a vanishing contribution to the integral.315

Therefore, we need only to consider the region with finite �q ⋅ z� in the deeply inelastic regime.
In the target’s rest frame, ⌫A = q0. Defining the quantity r = �q ⋅ �z���q�, we have

q ⋅ z = q0z0 − �q ⋅ �z = ⌫A �z0 −
��q�

⌫A
r� = ⌫A �z0 −

�

1 +Q2�⌫2
A
r� . (3.4)

We note again that this equation is independent of A.
In the DIS limit, Q2

�⌫2
A
= (2MAxA)�⌫A is small and we can expand the square root:

q ⋅ z = ⌫A(z0 − r) −MAxAr + O �M2

A
r

⌫A
� . (3.5)

Here, the target mass MA appears but only in combination with xA and always satisfies MAxA =320

MNxN . In order to keep �q ⋅ z� finite in the deeply inelastic limit, each term on the right hand side of
Eq. (3.5) must separately be finite. (Being separately infinite requires the scaling (z0−r) ∼ (r�⌫A)→∞,
which cannot be consistently satisfied.) Since MAxA is fixed, r itself must be finite. Therefore, for
some constants c > 0 and d > 0, one has

�z0 − r� < c�⌫A and �r� < d�(xAMA) . (3.6)

The first inequality implies that �z0� < �r� + c�⌫A. After squaring and using r2 = �z2 − z2⊥ < �z2, where z⊥325

is the component of z orthogonal to �q, we obtain the inequality chain
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0
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+O �

1

⌫2
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� < �z2 +
2cd

(xAMA⌫A)
+O �

1

⌫2
A

� . (3.7)

To obtain the rightmost bound, we used the second inequality in Eq. (3.6). Using the rightmost
equality in Eq (3.3), we obtain the final result:

z2 = z2
0
− �z2 <

2cd

(xAMA⌫A)
+O �

1

⌫2
A

� =
4cd

Q2
+O �

1

⌫2
A

� . (3.8)

We therefore find that the dominant region remains 0 ≤ z2 ≤ (2cd�Q2
), and is independent of
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Dominant contribution to Fourier integral: 0 ≤ z2 ≤ const/Q2

Q2 ∼ νA ≳ Λ2
had ≫ Λ2

QCD

What does the DIS limit mean in practice?
Nucleon case (see textbook by Muta):  Q2 ∼ pN ⋅ q ≳ M2

N

Nuclear case (naively):   would suggest very large Q2 ∼ pA ⋅ q ≳ M2
A Q2

We argue instead:
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Figure 3.1: (Left) A contour (circle) along the radius of convergence of the time-ordered matrix element T̃A
µ⌫(pA, q)

in the complex (1�xA) plane for �∗A→ �∗A scattering. Branch cuts (sawtooth lines) are along the real axis at x−1A < 1
and x−1A > 1 lines. (Right) A deformation of the contour along the branch cuts with vanishing arcs.
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XAµ
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which is equivalent to the expression in Eq. (2.7) of Sec. 2.2, and the time-ordered amplitude for virtual
Compton scattering process �∗A→ �∗A in the short-distance limit
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In Eq. (3.13), T̃A
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(pA, q) is decomposed into coefficients of Lorentz structures in the same manner as

W̃A
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(pA, q) in Eq. (2.8). As T̃A
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(pA, q) is time ordered, the first (second) relation in Eq. (3.14) is for

DIS with (anti)particles. We assume here and below that the hadronic currents Jµ
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are always370

renormalized objects in QCD.
The distinction between the short-distance limit and the DIS limit is important: In the DIS limit,
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) → ∞ while xA = (Q
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�2pA ⋅ q) is fixed. In the short-distance limit, (Q2
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) → ∞ while

xA�Q is fixed, meaning that xA grows with (Q�MA); equivalently, the quantity (1�xA) is small with

4The subscripts XA on the vector currents Jµ, J⌫ are simply labels to denote the hadronic current that takes A to
X. The current is independent of states A,X but depends on whether the current is electromagnetic or weak.
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by

W̃A

µ⌫
(pA, q) ≡

1

4⇡ �
d4z eiq⋅z�A(pA)�Jµ(z)�X(pX)��X(pX)�J⌫(0) �A(pA)� (2.7)

= −gµ⌫W̃1 +
pAµpA⌫

M2

A

W̃2 − i✏µ⌫⇢�
p⇢
A
q�

M2

A

W̃3

+
qµq⌫
M2

A

W̃4 +
pAµq⌫ + pA⌫qµ

M2

A

W̃5 +
pAµq⌫ − pA⌫qµ

M2

A

W̃6 . (2.8)

In Eq. (2.7), the normalization factor 1�(4⇡) is conventional and the sum and integral (� ) run over
all discrete and continuous configurations of X, implying that W̃A

µ⌫
(pA, q) is inclusive with respect to

X (see also Appendix A.2). We note that, although the targets considered in this work are nuclei, we245

refer to quantities such as that given in Eq. (2.7) as a hadronic tensors, in keeping with convention. For
a polarized target, the decomposition into structure functions takes on a more complicated structure,
see e.g. [29, 61, 72–75]. In Sec. 3.2 and Appendix A.5, we review the connection between the W̃i and
the internal structure of A.

Modern notation calls for using the structure functions F̃i rather than W̃i. The mapping between
the two sets of dimensionless structure functions is given by

�F̃1, F̃2, F̃3, F̃4, F̃5,6�

= �W̃1,
Q2

2xAM2

A

W̃2,
Q2

xAM2

A

W̃3,
Q2

2M2

A

W̃4,
Q2

2xAM2

A

W̃5,6� . (2.9)

The purpose of using F̃i is to factor out known dependence on Q2 and make more manifest the phe-250

nomena of scaling, i.e., that F̃i depend only on xA, a dimensionless quantity, up to small, logarithmic
QCD corrections. In the discussion that follows, we focus on F̃1, F̃2, and F̃3. However, we include
a detailed discussion of F̃4 and F̃5 in the Appendix. The structure functions F̃4 and F̃5 enter into
differential cross sections, but are suppressed by a factor O( m

2
`

MAE`
), where m2

`
is the lepton mass

squared, MA is the hadronic mass, and E` is the energy of one of the external leptons [54]. This255

suppression is a consequence of contracting the symmetric leptonic tensor Lµ⌫ with qµ (or q⌫), which
subsequently vanishes due to the conservation of weak currents by massless leptons. Notably, finite
lepton-mass effects could be measured in ⌫⌧ -DIS, such as at the SHIP, FASER, or SND@LHC detectors
at CERN [31, 76–78]. As for F̃6, which signifies charge-parity violation, the coefficient vanishes when
contracted with Eq. (2.6), hence it does not contribute to the cross-section.260

Considerations for Spin 1 and Greater

Contrary to a nucleon target with spin-1/2, nuclei can have spin-1 or greater. The case of a spin-1
nuclear targets in NC DIS with charged leptons has been discussed since the 80s[79]. At leading twist,
i.e., twist ⌧ = 2, the additional effects of scattering on a polarized spin-1 target reside in a single new
structure function b̃1(x). This structure function effectively measures the extent to which a target265

nucleus deviates from a trivial bound state of protons and neutrons. For the deuteron, it is expected
that b̃1 ≈ 0, but for other nuclei one could have b̃1 ∼ O(F̃1).

More generally, using gauge invariance and P- and T-invariance for the spin-1 case, the hadronic
tensor can be expressed in terms of eight independent structure functions, {F̃1, F̃2, b̃1,2,3,4, g̃1, g̃2}.
Similar results are found for the hadronic tensor of a (space-like) virtual photon target [80]. The270

functions F̃1, F̃2, g̃1, and g̃2 are analogous to the scaling structure functions of a spin-1/2 target.
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Relation between  and W T
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Figure 3.1: (Left) A contour (circle) along the radius of convergence of the time-ordered matrix element T̃A
µ⌫(pA, q)

in the complex (1�xA) plane for �∗A→ �∗A scattering. Branch cuts (sawtooth lines) are along the real axis at x−1A < 1
and x−1A > 1 lines. (Right) A deformation of the contour along the branch cuts with vanishing arcs.
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(pA, q) =

1
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d4z eiq⋅z�A�J†

XAµ
(z) JXA⌫(0)�A� , (3.11)

which is equivalent to the expression in Eq. (2.7) of Sec. 2.2, and the time-ordered amplitude for virtual
Compton scattering process �∗A→ �∗A in the short-distance limit
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are related by the following dispersion relationship [40, 85]

T̃A
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(pA, q)�
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(1�xA)−i" = 4⇡ W̃A

µ⌫
(pA, q), for xA > 0 , (3.14a)
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(1�xA)−i"
(1�xA)+i" = 4⇡ �W̃
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µ⌫
(pA,−q)�

†
, for xA < 0 . (3.14b)

In Eq. (3.13), T̃A

µ⌫
(pA, q) is decomposed into coefficients of Lorentz structures in the same manner as

W̃A

µ⌫
(pA, q) in Eq. (2.8). As T̃A

µ⌫
(pA, q) is time ordered, the first (second) relation in Eq. (3.14) is for

DIS with (anti)particles. We assume here and below that the hadronic currents Jµ

A
and J⌫

A
are always370

renormalized objects in QCD.
The distinction between the short-distance limit and the DIS limit is important: In the DIS limit,
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�M2

A
) → ∞ while xA = (Q
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�2pA ⋅ q) is fixed. In the short-distance limit, (Q2
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) → ∞ while

xA�Q is fixed, meaning that xA grows with (Q�MA); equivalently, the quantity (1�xA) is small with

4The subscripts XA on the vector currents Jµ, J⌫ are simply labels to denote the hadronic current that takes A to
X. The current is independent of states A,X but depends on whether the current is electromagnetic or weak.
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• The discontinuity in the physical DIS region  is related to  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Figure 3.1: (Left) A contour (circle) along the radius of convergence of the time-ordered matrix element T̃A
µ⌫(pA, q)

in the complex (1�xA) plane for �∗A→ �∗A scattering. Branch cuts (sawtooth lines) are along the real axis at x−1A < 1
and x−1A > 1 lines. (Right) A deformation of the contour along the branch cuts with vanishing arcs.
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Figure 3.1: (Left) A contour (circle) along the radius of convergence of the time-ordered matrix element T̃A
µ⌫(pA, q)

in the complex (1�xA) plane for �∗A→ �∗A scattering. Branch cuts (sawtooth lines) are along the real axis at x−1A < 1
and x−1A > 1 lines. (Right) A deformation of the contour along the branch cuts with vanishing arcs.
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An important consequence is the following link between individual  
and the Mellin moments of the structure functions

ΔT̃A
i

ΔT̃A
i ∼ ∑

N

F̃A
i (N, Q2)x−N

A



Operator Product Expansion (OPE)
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There are two different expansions:



Short distance expansion of T̃A
μν

25

of the second term to zA = −x
′
A
, collecting factors of (−1), using (−1)ai = (−1)

−ai , and relabeling gives

tA
i(k)(Q2

) = (−2i) �
1

0

dx′
A
(x′

A
)
k−1

× �⇣i (x
′
A
)
−ai W̃A

i
(x′

A
,Q2
) + (−1)

k−1+ai+bi ⇣i (x′A)−ai W̃A

i
(x′

A
,Q2
)� (A.56)

= (−2i) �1 + (−1)k−1+ai+bi� �
1

0

dx′
A
(x′

A
)
k−1

F̃A

i
(x′

A
,Q2
). (A.57)

We now denote the N th Mellin moment of the function M(z) by MN and fix normalizations such
that a Mellin transformation and its inverse (over a path c) are:

MN
= �

1

0

dz zN−1 M(z) with M(z) =
1

2⇡i �
c+i∞

c−i∞ dN z−N MN . (A.58)

Under this normalization, the moments of W̃A

i
(xA) are related to those of F̃A

i
(xA) by

F̃AN

1
= W̃AN

1
, (A.59a)

F̃AN
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Q2

2M2

A

� W̃A(N−1)
i

for i = 2,5,6 , (A.59b)
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� W̃A(N−1)
3

, (A.59c)

F̃AN
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� W̃AN

4
. (A.59d)

Both are related to the N th coefficient function tA
i(k=N)(Q2

) by

tA
i(N)(Q2

) = −2i �1 + (−1)N−1+ai+bi� F̃AN

i
(Q2
) (A.60a)

= �
0, N = even

−4i F̃AN

i
(Q2
), N = odd

, for i = 1,4,5 , (A.60b)

= �
−4i F̃AN

i
(Q2
), N = even

0, N = odd
, for i = 2,3,6 . (A.60c)

This allows us to rewrite the expansion in Eq. (A.48) as

⇣A
i
× !ai

A
× �T̃A

i
(Q2,!A) = −4i

∞
�

N

F̃AN

i
(Q2
) !N

A
, (A.61)

where it is implied that the index N runs only over odd or even integers.
We now make a few brief comments. First, in order for Eq. (A.61) to hold, �!A� < 1 must be

satisfied, i.e., one must be in the DIS limit. Second, as N increases, the dominant contribution to
F̃AN

i
is when the argument of F̃A

i
(z) approaches unity since (according to the definition of Eq. (A.58))

F̃AN

i
would otherwise be suppressed by a small number. Finally, since !A = 1 corresponds to the elastic

limit (see Eq. (2.2c)), Q2 must be made increasingly large for large-N moments to be well-defined and
for the invariant mass of the hadronic system to remain in the perturbative regime.

Expanding TA

µ⌫
with the OPE

Using the OPE, the leading behavior of TA

µ⌫
in powers of (1�Qp

) can be decomposed into a sum of
operators Oµ1,...,µk and Wilson coefficients c⌧,◆

µ⌫µ1...µk
. This expansion is given by [40, 49, 50]

lim
z→0

TA

µ⌫
(pA, q)

OPE
= − 2i �

k,◆

c⌧=2,◆
µ⌫µ1...µk

(q) �A(pA)�O
µ1...µk
◆,⌧=2 �A(pA)� +O(⌧ > 2) . (A.62)
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At leading power, the composite operators Oµ1...µk
◆,⌧

are symmetric, quark billinears (or pairs of
gluon field strengths) that sandwich uncontracted covariant derivatives. Tallying up the number
of uncontracted Lorentz indicies implies that Oµ1...µk

◆,⌧
carries a spin of k. The operators are organized

according to their twist ⌧ ≡ d − n, where d is the dimensionality of Oµ1...µk
◆,⌧

in the standard sense of
dimension power counting in an effective field theory. For a fixed spin and twist, the index ◆ catalogs
all the Lorentz structures that can possibly contract with Oµ1...µk

◆,⌧
. Coupling and renormalization

factors are sequestered into the effective Wilson coefficient c⌧,◆
µ⌫µ1...µk

(q). For fixed spin k, a larger
twist ⌧ corresponds to a larger (1�Q) suppression in the Wilson coefficient. Schematically, Eq. (A.62)
stipulates that in the short-distance limit, the time-ordered matrix element TA

µ⌫
, which is a function of

pA and q, can be expressed in terms of Wilson coefficients, which are only functions of q, and hadronic
matrix elements, which are only functions of pA.

The operators Oµ1,...,µk can be decomposed into symmetric (traceless) and non-symmetric parts,
with Oµ1,...,µk ∼ P̂µ1

A
. . . P̂µk

A
+ Tr. The trace term captures all contributions proportional to the

spacetime metric and derivatives, which after contractions or applications of equations of motion give
rise to powers of quark masses [49, 50]. Neglecting quark masses14, the matrix elements that follow
from acting on Oµ1,...,µ2k are given by

�A�Oµ1...µ2k
◆,⌧=2 �A� = A2k

⌧=2 × ⇧̃
µ1...µ2k , where (A.63a)

⇧̃
µ1...µ2k =

k

�

j=0
(−1)

j (2k − j)!

2j(2k)!
⌘(j,2k − 2j) {g...g}

�����������������
j g

µnµm ′
s

{pA...pA}
����������������������������������������(2k−2j) p

µn
A
′
s

(p2
A
)
j . (A.63b)

Note the index change from k to 2k. The factor A2k

⌧=2 is the scalar-valued “reduced” hadronic matrix
element and describes long-distance hadronic dynamics. (The 2k in A2k

⌧=2 is an index, not an exponent.)
The index j sums over all permutations of pµn

A
and gµnµm , with µn, µm ∈ {µ1, . . . , µ2k}, that contract

with a particular Wilson coefficient. For a given k and j, the two {. . .} brackets denote j spacetime
metrics gµnµm and (2k − 2j) factors of momentum pµm

A
. The permutation multiplicity ⌘ is

⌘ (j metrics, 2k − 2j factors of pA) =
1

2j

(2k)!

j!(2k − 2j)!
. (A.64)

The numerator of ⌘ is calculated from (2k)! = [(2k−2j)+(2j)]! The denominator factor of 2j accounts
for the two-fold symmetry of j symmetric metric tensors, i.e., gµnµm = gµmµn . If a metric or momentum
factor is pulled from either {. . .} bracket, ⌘ is updated accordingly.

In the massless target limit, i.e., when (M2

A
�Q2
)→ 0, one neglects j > 0 terms since they generate

powers of (p2
A
)
j
= M2j

A
. For this reason, the j > 0 terms are sometimes called “kinematical power

corrections” [55, 83]. In the j = 0 limit, Eq. (A.63) reduces to 2k factors of pµm

A
:

�A�Oµ1,...,µ2k
◆,⌧=2 �A��(MA�Q)2→0

= A2k

⌧=2(p2A) × ⇧̃µ1...µ2k �
j=0 = A

2k

⌧=2(p2A) × (pµ1

A
. . . pµ2k

A
) . (A.65)

14In practice, finite quark masses can be incorporated in TMCs through a rescaling of the Nachtmann scaling variable.
See Appendix A.2 of Ref. [60] and references therein.
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:  Traceless,  
symmetric rank-2k tensor
Π̃μ1⋯μ2k

At leading power of ⌧ and for a fixed 2k > 2, the c functions in Eq. (A.62) can be decomposed as

c⌧=2,◆
µ⌫µ1,...,µ2k

(q) = �−2gµ⌫qµ1qµ2C
2k

1
+ gµµ1g⌫µ2Q

2C2k

2
− i✏µ⌫↵�g

↵

µ1
q�qµ2C

2k

3

+4
qµq⌫
Q2

qµ1qµ2C
2k

4
+ 2(gµµ1q⌫qµ2 ± g⌫µ1qµqµ2)C

2k

5,6
� ×

2
2k

(Q2)2k
× �

2k

�
m=3 qµm� . (A.66)

Here, the C2k

◆=1,...,6 are scalar-valued coefficients that parameterize the normalization of each c⌧=2,◆
µ⌫µ1,...,µ2k

.
The C◆ are defined to all orders in QCD but can be identified and matched to quantities in fixed-order
perturbation theory. The tensor part, i.e., the part carrying Lorentz indices, can then be organized
according to Lorentz structures as in Eq. (A.46). Conventional factors of 2 in Eq. (A.66) are pulled
from the C2k

◆
in order to simplify later expressions.

Assembling these ingredients and contracting over all 2k > kmin indices, the OPE gives

lim
z→0

TA

µ⌫
(q, pA)

OPE
= − 2i

∞
�

k=kmin

�−2gµ⌫qµ1qµ2C
2k

1
+ gµµ1g⌫µ2Q

2C2k

2
− i✏µ⌫↵�g

↵

µ1
q�qµ2C

2k

3

+ 4
qµq⌫
Q2

qµ1qµ2C
2k

4
+ 2(gµµ1q⌫qµ2 ± g⌫µ1qµqµ2)C

2k

5,6
�

×
2
2k

(Q2)2k
× �

2k

�
m=3 qµm� ×A

2k

⌧=2(p2A) × ⇧̃µ1...µ2k +O(⌧ > 2) (A.67)

≡ �T̃A

1µ⌫
+�T̃A

2µ⌫
+�T̃A

3µ⌫
+�T̃A

4µ⌫
+�T̃A

5µ⌫
+�T̃A

6µ⌫
+O(⌧ > 2) (A.68)

= − gµ⌫�T̃A

1
+
pAµpA⌫

M2

A

�T̃A

2
− i✏µ⌫↵�

p↵
A
q�

M2

A

�T̃A

3
+
qµq⌫
M2

A

�T̃A

4

+
(pAµq⌫ + pA⌫qµ)

M2

A

�T̃A

5
+
(pAµq⌫ − pA⌫qµ)

M2

A

�T̃A

6
+O(⌧ > 2). (A.69)

The starting point for the summation over k depends on the particular Wilson coefficient; specifically,
kmin = 2 for C2 while kmin = 1 for the other Ci coefficients. In Eq. (A.69), the scalar-valued coefficients
�T̃A

i=1,...,6, i.e., the quantities without external Lorentz indices, are related to the hadronic structure
functions WA

i
through the dispersion relationships of Eqs. (A.45) and (A.47), up to (1�Q) corrections.

The �T̃i are given explicitly in terms of summations over k and j below in Eqs. (A.96)-(A.106).
In the intermediate step Eq. (A.68), each �T̃A

◆=1,...,6 µ⌫
denotes the collection of contractions that

are respectively proportional to the coefficient C◆. We introduce this step because �T̃A

◆ µ⌫
and �T̃A

i
do

not have a one-to-one correspondence when MA ≠ 0. As a consequence of the normalizations adopted
for W̃A

i
in Eq. (A.31), and subsequently those for �T̃A

i
in Eq. (A.46), some �T̃A

i
are sourced by

multiple OPE operators when MA ≠ 0. This phenomenon of W̃A

i
(or �T̃A

i
) being sourced by two or

more C◆ is sometimes called “structure function mixing,” and is discussed in Appendix A.4.
We now derive all six �T̃A

◆ µ⌫
from Eq. (A.67) by contracting all µm indices. After, we reorganize

�T̃A

◆ µ⌫
and group terms according to their Lorentz structure, e.g., collect all terms proportional

to gµ⌫ or all terms proportional to ✏µ⌫↵�p
↵

A
q� . We then identify the �T̃A

i
, which are in terms of

hadronic matrix elements A2k

⌧=2, Wilson coefficients C2k

◆
, and nested summations. In Appendix A.5,

the summations are first evaluated for the case of a massless target. The results for the (M2

A
�Q2
) ≠ 0

case are then expressed in terms of structure functions for massless targets.
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Local operators



Short distance expansion of T̃A
μν

26

so and comparing the result to Eq. (3.15) recovers (see Appendix A.5 for details):

F̃AN

i
= �

1

0

dy yN−1 F̃A

i
(y,Q2

) = CN

i
(Q2
)AN

⌧=2 + power corrections, for i = 1,3,4,5, (3.21a)

F̃A(N−1)
2

= �

1

0

dy yN−2 F̃A

2
(y,Q2

) = CN

2
(Q2
)AN

⌧=2 + power corrections . (3.21b)

Non-trivially, Eq. (3.21) states that one can identify the product of the Wilson coefficient and reduced
hadronic matrix element, (C2k

◆
A2k

⌧=2), as integer Mellin moments of structure functions, up to power
corrections. (We note that footnote 6 is still applicable.)

If one does not truncate the momentum factor ⇧̃µ1...µ2k in Eq. (3.19) at j = 0 and instead retains the
sums over all j, and hence retains the sum over powers of p2

A
=M2

A
, then one obtains expressions that

are analogous to Eq. (3.21). For example: one can identify the Mellin transformation of the structure
function F2 with a nonzero target mass as the product (C2k

◆=2A2k

⌧=2) with a coefficient proportional to
(M2

A
�Q2
)
j :

�

1

0

dxA xN−2
A

F̃A,TMC

2
(xA,Q

2
) =

∞
�

j=0
�

�

M2

A

Q2

�

�

j

(N + j)!

j! (N − 2)!

CN+2j
2

AN+2j
⌧=2

(N + 2j)(N + 2j − 1)
. (3.22)

Similar expressions can be found in Appendix A.5 for the other structure functions. Intuitively, the
right hand side of Eq. (3.22) states that structure functions with TMCs can be thought simply as the
product in moment space of a structure function for a massless target, i.e., the (CiA⌧=2) factor, and
a kinematical factor, i.e., everything else. For this reason, the TMCs under discussion are sometimes
called “purely kinematical” [55, 83, 88]. It is not obvious but, with the use of generating functions,
the inverse-Mellin transform of Eq. (3.22) has a closed form [49, 50, 81]. That is to say, one obtains
expressions for structure functions with TMCs in terms of structure functions for a massless target in
x-space. These results are summarized in the following section for FA

1
, FA

2
, and FA

3
, and in Appendix

A.5 for all Fi.

3.3. Master formula for structure functions with TMCs in `A DIS

Following the procedure outlined in Sec. 3.2, we obtain a set of master formulas for twist-2 target
mass corrections to structure functions for nuclei that are similar to those in Eq. (23) in Ref. [60] for
nucleons. Using the notation of Refs. [54, 60], the general master formula for target mass-corrected
structure functions FA,TMC

j
for j = 1, . . . ,6 reads:

F̃A,TMC

j
(xA,Q

2
) =

6

�

i=1
Ai

j
F̃A,(0)
i

(⇠A,Q
2
) +Bi

j
h̃A

i
(⇠A,Q

2
) +Cj g̃

A

2
(⇠A,Q

2
) . (3.23)

On the left-hand side, the FA,TMC

j
take as arguments the Bjorken scaling variable xA and scale Q;

on the right-hand side, individual terms are given in terms of structure functions for massless nuclei
F̃A,(0)
i

, which take as arguments the Nachtmann variable ⇠A and scale Q. The coefficients Ai

j
, Bi

j
, Cj

are derived in Appendix A, and are the same that are given in Tables I, II, III in [54] for j = 1, . . . ,5.
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Evaluating the contractions of Lorentz indices gives:

Similar for the other structure functions

The master equations in x-space are then obtained by  
inverse Mellin transformation


