Target mass corrections in lepton-nucleus DIS

Ingo Schienbein UGA/LPSC Grenoble

Based on R. Ruiz et al, arXiv:2301.07715

DIS 2023, Michigan State University, March 27-3I, 2023

Introduction

- Deeply-inelastic scattering (DIS)
- Key process for studying the structure of hadrons
- Backbone of global analyses of parton distribution functions (PDFs)
- DIS off nucleons and nuclei will be at the forefront again with high precision studies at the EIC, future neutrino facilities, ...
- Target mass corrections (TMC) to DIS structure functions
- Improve description of high-x/low-Q DIS data
- More precise data in this region will provide important tests of QCD
- Timely to review again with particular focus on nuclear targets

Figure from IS et al, arXiv:0709.1775

Two major theoretical approaches to DIS

- Operator Product Expansion (OPE)
- Georgi, Politzer '76: LO QCD
- Barbieri et al ‘76: LO+including quark masses
- De Rujula, Georgi, Politzer ‘77: NLO QCD
- Parton model
- Ellis, Furmanski, Petronzio ‘83: LO+partonic transverse momentum ($k_{T} \neq 0$) Agreement of non-collinear parton approach with OPE at LO shown!
- Aivazis, Collins, Olness, Tung ‘93: TMCs in collinear parton model ($k_{T}=0$)
- Theory not carved in stone!
- OPE proven only for simple scalar models
- Non-collinear parton model not covered by QCD factorisation theorems
- Threshold problem:TMC corrected structure functions do not vanish for $x \rightarrow 1$.

Master formula

$$
\begin{aligned}
& F_{1}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}}{\xi_{N} r_{N}}\right) F_{1}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{M_{N}^{2} x_{N}^{2}}{Q^{2} r_{N}^{2}}\right) h_{2}^{A}\left(\xi_{N}, Q^{2}\right)+\left(\frac{2 M_{N}^{4} x_{N}^{3}}{Q^{4} r_{N}^{3}}\right) g_{2}^{A}\left(\xi_{N}, Q^{2}\right) \\
& F_{2}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}^{2}}{\xi_{N}^{2} r_{N}^{3}}\right) F_{2}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{6 M_{N}^{2} x_{N}^{3}}{Q^{2} r_{N}^{4}}\right) h_{2}^{A}\left(\xi_{N}, Q^{2}\right)+\left(\frac{12 M_{N}^{4} x_{N}^{4}}{Q^{4} r_{N}^{5}}\right) g_{2}^{A}\left(\xi_{N}, Q^{2}\right) \\
& F_{3}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}}{\xi_{N} r_{N}^{2}}\right) F_{3}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{2 M_{N}^{2} x_{N}^{2}}{Q^{2} r_{N}^{3}}\right) h_{3}^{A}\left(\xi_{N}, Q^{2}\right)+0
\end{aligned}
$$

IS et al, A review of TMC, arXiv:0709.1775

- Nucleon mass M_{N}
- Nachtmann variable $\xi_{N}=2 x_{N} /\left(1+r_{N}\right), r_{N}=\sqrt{1+4 x_{N}^{2} M_{N}^{2} / Q^{2}}$
- $F_{i}^{A,(0)}$ standard parton model structure functions with $M_{N}=0$
- h_{i}^{A}, g_{i}^{A} convolution integrals over $F_{i}^{A,(0)}$
- Modular, easy to use (organising the rather complicated expressions in the OPE literature)
- Valid to any order in α_{s}, quark masses included in $F_{i}^{A,(0)}$, valid for nucleons and nuclei!

New review 2301.07715

- Reconsider TMC from OPE with particular focus on nuclear case
- Attention to notation exhibiting kinematics
- Consider conditions of light cone dominance for nuclei
- Consider spin of target nucleus which can be different from spin-1/2 of nucleons
- Present derivation of TMCs from OPE in much greater detail
- Prove validity of TMC master equation for nuclei (Why does the nucleon mass M_{N} appear and not M_{A} ?)
- Consider full nuclear target:
- No use of nucleonic degrees of freedom
- Proper theoretical definition of nuclear structure functions and PDFs as they are intuitively used in the literature
- Parametrization of TMC accurate at the sub-percent level. Useful to calculate TMC to structure functions with any PDF set

Kinematics of lepton-nucleus DIS

Nucleus A	Nucleon N
$M_{A}=A M_{N}$	$M_{N}=M_{A} / A$
$p_{A}=A p_{N}$	$p_{N}=p_{A} / A$
$x_{A}=\frac{Q^{2}}{2 p_{A} \cdot q} \equiv x_{N} / A$	$x_{N}=\frac{Q^{2}}{2 p_{N} \cdot q} \equiv A x_{A}$
$x_{A} \in[0,1]$	$x_{N} \in[0, A]$
$W_{A}^{2}=\left(p_{A}+q\right)^{2}$	$W_{N}^{2}=\left(p_{N}+q\right)^{2}$
$\nu_{A}=\left(q \cdot p_{A}\right) / M_{A} \equiv \nu_{N}$	$\nu_{N}=\left(q \cdot p_{N}\right) / M_{N} \equiv \nu_{A}$
$y_{A}=\nu_{A} / E \equiv y_{N}$	$y_{N}=\nu_{N} / E \equiv y_{A}$

$$
A\left(p_{A}\right) \xlongequal{\ell_{1}\left(k_{1}\right)} \underbrace{\ell_{1}\left(k_{2}\right)}_{q=k_{1}-k_{2}}
$$

Cross section

$d \sigma \sim L^{\mu \nu} \tilde{W}_{\mu \nu}^{A}$

Leptonic tensor calculable in pert. theory

Hadronic tensor

not calculabe in pert. theory

Hadronic tensor

Most general form in terms of structure functions:

$$
\begin{aligned}
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) & \equiv \frac{1}{4 \pi} \mathcal{f} d^{4} z e^{i q \cdot z}\left\langle A\left(p_{A}\right)\right| J_{\mu}(z)\left|X\left(p_{X}\right)\right\rangle\left\langle X\left(p_{X}\right)\right| J_{\nu}(0)\left|A\left(p_{A}\right)\right\rangle \\
& =-g_{\mu \nu} \tilde{W}_{1}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \tilde{W}_{2}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \tilde{W}_{4}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{5}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} .
\end{aligned}
$$

Modern notation:
$\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5,6}\right\}$

$$
=\left\{\tilde{W}_{1}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{2}, \frac{Q^{2}}{x_{A} M_{A}^{2}} \tilde{W}_{3}, \frac{Q^{2}}{2 M_{A}^{2}} \tilde{W}_{4}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{5,6}\right\}
$$

Hadronic tensor

Most general form in terms of structure functions:

$$
\begin{array}{rl}
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) & \equiv \frac{1}{4 \pi} \mathcal{f} d^{4} z e^{i q \cdot z}\left\langle A\left(p_{A}\right)\right| J_{\mu}(z)\left|X\left(p_{X}\right)\right\rangle\left\langle X\left(p_{X}\right)\right| J_{\nu}(0)\left|A\left(p_{A}\right)\right\rangle \\
& =-g_{\mu \nu} \tilde{W}_{1}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \tilde{W}_{2}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \tilde{W}_{4}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{V}_{5}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{V}_{6} . \\
d \sigma_{\mid W_{4}} \propto m_{l}^{2} & d \sigma_{\mid W_{6}} \propto m_{l}^{2}
\end{array}
$$

Modern notation:
$\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5,6}\right\}$

$$
=\left\{\tilde{W}_{1}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{2}, \frac{Q^{2}}{x_{A} M_{A}^{2}} \tilde{W}_{3}, \frac{Q^{2}}{2 M_{A}^{2}} \tilde{W}_{4}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{5,6}\right\}
$$

Hadronic tensor

Most general form in terms of structure functions:

$$
\begin{array}{rl}
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) & \equiv \frac{1}{4 \pi} \mathcal{f} d^{4} z e^{i q \cdot z}\left\langle A\left(p_{A}\right)\right| J_{\mu}(z)\left|X\left(p_{X}\right)\right\rangle\left\langle X\left(p_{X}\right)\right| J_{\nu}(0)\left|A\left(p_{A}\right)\right\rangle \\
& =-g_{\mu \nu} \tilde{W}_{1}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \tilde{W}_{2}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \tilde{W}_{4}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{V}_{5}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} . \\
d \sigma_{\mid W_{4}} \propto m_{l}^{2} & d \sigma_{\mid W_{5}} \propto m_{l}^{2}
\end{array}
$$

Modern notation:
$\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5,6}\right\}$

$$
=\left\{\tilde{W}_{1}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{2}, \frac{Q^{2}}{x_{A} M_{A}^{2}} \tilde{W}_{3}, \frac{Q^{2}}{2 M_{A}^{2}} \tilde{W}_{4}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{5,6}\right\}
$$

Hadronic tensor

Most general form in terms of structure functions:

$$
\begin{aligned}
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) & \equiv \frac{1}{4 \pi} \mathcal{f} d^{4} z e^{i q \cdot z}\left\langle A\left(p_{A}\right)\right| J_{\mu}(z)\left|X\left(p_{X}\right)\right\rangle\left\langle X\left(p_{X}\right)\right| J_{\nu}(0)\left|A\left(p_{A}\right)\right\rangle \\
& =-g_{\mu \nu} \tilde{W}_{1}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \tilde{W}_{2}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \tilde{W}_{4}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{5}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \int W_{6} . \\
& d \sigma_{\mid W_{4}} \propto m_{l}^{2} \quad d \sigma_{\mid W_{5}} \propto m_{l}^{2}
\end{aligned}
$$

Modern notation:
$\left\{\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5,6}\right\}$

$$
=\left\{\tilde{W}_{1}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{2}, \frac{Q^{2}}{x_{A} M_{A}^{2}} \tilde{W}_{3}, \frac{Q^{2}}{2 M_{A}^{2}} \tilde{W}_{4}, \frac{Q^{2}}{2 x_{A} M_{A}^{2}} \tilde{W}_{5,6}\right\}
$$

Master formula from OPE

$$
\begin{aligned}
& \tilde{F}_{1}^{A, \mathrm{TMC}}\left(x_{A}\right)=\left(\frac{x_{A}}{\xi_{A} r_{A}}\right) \tilde{F}_{1}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{2}}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right)+\left(\frac{2 M_{A}^{4} x_{A}^{3}}{Q^{4} r_{A}^{3}}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
& \tilde{F}_{2}^{A, \mathrm{TMC}}\left(x_{A}\right)=\left(\frac{x_{A}^{2}}{\xi_{A}^{2} r_{A}^{3}}\right) \tilde{F}_{2}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{6 M_{A}^{2} x_{A}^{3}}{Q^{2} r_{A}^{4}}\right) \tilde{h}_{2}^{A}\left(\xi_{A}\right)+\left(\frac{12 M_{A}^{4} x_{A}^{4}}{Q^{4} r_{A}^{5}}\right) \tilde{g}_{2}^{A}\left(\xi_{A}\right), \\
& \tilde{F}_{3}^{A, \mathrm{TMC}}\left(x_{A}\right)=\left(\frac{x_{A}}{\xi_{A} r_{A}^{2}}\right) \tilde{F}_{3}^{A,(0)}\left(\xi_{A}\right)+\left(\frac{2 M_{A}^{2} x_{A}^{2}}{Q^{2} r_{A}^{3}}\right) \tilde{h}_{3}^{A}\left(\xi_{A}\right)
\end{aligned}
$$

- Nucleus mass M_{N}
- Nachtmann variable $\xi_{A}=2 x_{A} /\left(1+r_{A}\right), r_{A}=\sqrt{1+4 x_{A}^{2} M_{A}^{2} / Q^{2}}$
- $\quad \tilde{F}_{i}^{A,(0)}\left(x_{A}, Q^{2}\right)$ standard parton model structure functions with $M_{A}=0$
- $\tilde{h}_{i}^{A}, \tilde{g}_{i}^{A}$ convolution integrals over $\tilde{F}_{i}^{A,(0)}$
- Same structure as master formula for nucleons. Detailed derivation.

From nuclear to averaged nucleon kinematics

Nucleus A	Nucleon N	
$M_{A}=A M_{N}$	$M_{N}=M_{A} / A$	
$p_{A}=A p_{N}$	$p_{N}=p_{A} / A$	
$x_{A}=\frac{Q^{2}}{2 p_{A} \cdot q} \equiv x_{N} / A$	$x_{N}=\frac{Q^{2}}{2 p_{N} \cdot q} \equiv A x_{A}$	
$x_{A} \in[0,1]$	$x_{N} \in[0, A]$	
$W_{A}^{2}=\left(p_{A}+q\right)^{2}$	$W_{N}^{2}=\left(p_{N}+q\right)^{2}$	
$\nu_{A}=\left(q \cdot p_{A}\right) / M_{A} \equiv \nu_{N}$	$\nu_{N}=\left(q \cdot p_{N}\right) / M_{N} \equiv \nu_{A}$	
$y_{A}=\nu_{A} / E \equiv y_{N}$	$y_{N}=\nu_{N} / E \equiv y_{A}$	
Nachtmann Variable \& Hadronic Mass		
$r_{A}=\sqrt{1+\frac{4 x_{A}^{2} M_{A}^{2}}{Q^{2}} \equiv r_{N}}$	$r_{N}=\sqrt{1+\frac{4 x_{N}^{2} M_{N}^{2}}{Q^{2}} \equiv r_{A}}$	
$\xi_{A}=R_{M} x_{A} \equiv \xi_{N} / A$	$\xi_{N}=R_{M} x_{N} \equiv A \xi_{A}$	
$\xi_{A} \in[0,1]$	$\xi_{N} \in[0, A]$	
Since $r_{A}=r_{N} \equiv r$, then $R_{M}=\frac{2}{1+r_{A, N}}$		
Also, $\xi_{A} / x_{A}=\xi_{N} / x_{N}=R_{M}=\frac{2}{1+r}$		
We define $\varepsilon=(x M / Q)$		

The M_{A}-terms are always
Accompanied by x_{A} factors:

$$
\frac{M_{A}^{2 j} x_{A}^{2 j}}{Q^{2 j}}=\frac{\left(M_{N}^{2 j} A^{2 j}\right) x_{A}^{2 j}}{Q^{2 j}}=\frac{M_{N}^{2 j} x_{N}^{2 j}}{Q^{2 j}}
$$

Rescaled structure functions:

$$
\begin{gathered}
A W_{\mu \nu}^{A}\left(p_{N}, q\right):=\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) \\
F_{2}^{A}\left(x_{N}, Q^{2}\right):=\tilde{F}_{2}^{A}\left(x_{A}, Q^{2}\right) \\
x_{N} F_{1,3}^{A}\left(x_{N}, Q^{2}\right):=x_{A} \tilde{F}_{1,3}^{A}\left(x_{A}, Q^{2}\right)
\end{gathered}
$$

From nuclear to averaged nucleon kinematics

One easily finds for the convolution integrals:

$$
\begin{aligned}
& \tilde{h}_{2}^{A}\left(\xi_{A}\right)=\int_{\xi_{A}}^{1} d u_{A} \frac{\tilde{F}_{2}^{A(0)}\left(u_{A}\right)}{u_{A}^{2}}=A \int_{\xi_{N}}^{A} d u_{N} \frac{F_{2}^{A(0)}\left(u_{N}\right)}{u_{N}^{2}}=: A h_{2}^{A}\left(\xi_{N}\right) \\
& \tilde{h}_{3}^{A}\left(\xi_{A}\right)=\int_{\xi_{A}}^{1} d u_{A} \frac{\tilde{F}_{3}^{A(0)}\left(u_{A}\right)}{u_{A}}=A \int_{\xi_{N}}^{A} d u_{N} \frac{F_{3}^{A(0)}\left(u_{N}\right)}{u_{N}}=: A h_{3}^{A}\left(\xi_{N}\right) \\
& \tilde{g}_{2}^{A}\left(\xi_{A}\right)=\int_{\xi_{A}}^{1} d u_{A} \tilde{h}_{2}^{A}\left(u_{A}\right)=\frac{1}{A} \int_{\xi_{N}}^{A} d u_{N} A h_{2}^{A}\left(u_{N}\right)=: g_{2}^{A}\left(\xi_{N}\right)
\end{aligned}
$$

With these expressions and $x_{N}=A x_{A}, \xi_{N}=A \xi_{A}, r_{A}=r_{N}, M_{A}=A M_{N}$

$$
\begin{aligned}
& F_{1}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}}{\xi_{N} r_{N}}\right) F_{1}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{M_{N}^{2} x_{N}^{2}}{Q^{2} r_{N}^{2}}\right) h_{2}^{A}\left(\xi_{N}, Q^{2}\right)+\left(\frac{2 M_{N}^{4} x_{N}^{3}}{Q^{4} r_{N}^{3}}\right) g_{2}^{A}\left(\xi_{N}, Q^{2}\right) \\
& F_{2}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}^{2}}{\xi_{N}^{2} r_{N}^{3}}\right) F_{2}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{6 M_{N}^{2} x_{N}^{3}}{Q^{2} r_{N}^{4}}\right) h_{2}^{A}\left(\xi_{N}, Q^{2}\right)+\left(\frac{12 M_{N}^{4} x_{N}^{4}}{Q^{4} r_{N}^{5}}\right) g_{2}^{A}\left(\xi_{N}, Q^{2}\right) \\
& F_{3}^{A, \mathrm{TMC}}\left(x_{N}, Q^{2}\right)=\left(\frac{x_{N}}{\xi_{N} r_{N}^{2}}\right) F_{3}^{A,(0)}\left(\xi_{N}, Q^{2}\right)+\left(\frac{2 M_{N}^{2} x_{N}^{2}}{Q^{2} r_{N}^{3}}\right) h_{3}^{A}\left(\xi_{N}, Q^{2}\right)+0
\end{aligned}
$$

Discussion

- Everything defined in terms of a nuclear state, QCD operators and a kinematics rescaling
- No use of nucleonic degrees of freedom was made
- Similarly, nuclear PDFs are introduced in the variable x_{A}.
- DGLAP and Sum rules in x_{A}
- Then, one can define the rescaling to the variable x_{N} :
$f_{i}^{A}\left(x_{N}\right) d x_{N}:=\tilde{f}_{i}^{A}\left(x_{A}\right) d x_{A}$
- DGLAP and Sum rules in x_{N}
- Again no use of (bound) nucleon PDFs, just nuclear PDFs (which is what is determined by data!)
- The rescaling at the hadronic level and the parsonic level are fully consistent

Which terms are included?

- Master formula resums leading twist TMC to all orders in $\left(M_{N}^{2} / Q^{2}\right)^{n}$
- Higher twist terms $\left(Q_{0}^{2} / Q^{2}\right)^{n}$ not included where Q_{0} is a hadronic scale (To be modelled separately)
$F_{i}^{\mathrm{TMC}}\left(x_{N}, Q^{2}\right) / F_{i}^{\mathrm{TMC}, \text { leading }}\left(x_{N}, Q^{2}\right)$

- Ratios very insensitive to nuclear A except $A=I$ (dashed, dotted)
- Simple parametrization of full TMC for everybody to use in numerical calculations (see 2301.07715 for details)

Summary

- New review of TMC from OPE with particular focus on nuclear case [2301.07715]
- Attention to notation exhibiting kinematics
- Consider conditions of light cone dominance for nuclei
- Consider spin of target nucleus which can be different from spin-1/2 of nucleons
- Present derivation of TMCs from OPE in much greater detail
- Prove validity of TMC master equation for nuclei
- Consider full nuclear target:
- No use of nucleonic degrees of freedom
- Proper theoretical definition of nuclear structure functions and PDFs as they are intuitively used in the literature
- Parametrization of TMC accurate at the sub-percent level. Useful to calculate TMC to structure functions with any PDF set

"Yesterday's sensation is today's calibration and tomorrow's backup slide"

-Richard Feynman (modified)

Light cone dominance of nuclear DIS

$$
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right)=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle A| J_{X A \mu}^{\dagger}(z) J_{X A \nu}(0)|A\rangle
$$

DIS limit:
$Q^{2} \rightarrow \infty, \quad \nu_{A} \rightarrow \infty, \quad$ such that $\quad \frac{Q^{2}}{\nu_{A}}=2 M_{A} x_{A} \quad$ is fixed

Dominant contribution to Fourier integral: $0 \leq z^{2} \leq$ const $/ Q^{2}$

What does the DIS limit mean in practice?

Nucleon case (see textbook by Muta): $Q^{2} \sim p_{N} \cdot q \gtrsim M_{N}^{2}$
Nuclear case (naively): $Q^{2} \sim p_{A} \cdot q \gtrsim M_{A}^{2}$ would suggest very large Q^{2}
We argue instead:

$$
Q^{2} \sim \nu_{A} \gtrsim \Lambda_{\mathrm{had}}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}
$$

Forward Compton scattering amplitude

$$
\begin{aligned}
\tilde{T}_{\mu \nu}^{A}\left(p_{A}, q\right) \equiv & \int d^{4} z e^{i q \cdot z}\langle A| \mathcal{T} J_{A \mu}^{\dagger}(z) J_{A \nu}(0)|A\rangle \\
= & -g_{\mu \nu} \Delta \tilde{T}_{1}^{A}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \Delta \tilde{T}_{2}^{A}-i \epsilon_{\mu \nu \alpha \beta} \frac{p_{A}^{\alpha} q^{\beta}}{M_{A}^{2}} \Delta \tilde{T}_{3}^{A} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \Delta \tilde{T}_{4}^{A}+\frac{\left(p_{A \mu} q_{\nu} \pm p_{A \nu} q_{\mu}\right)}{M_{A}^{2}} \Delta \tilde{T}_{5,6}^{A}
\end{aligned}
$$

For comparison

$$
\begin{aligned}
\tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right) & \equiv \frac{1}{4 \pi} \mathcal{f} d^{4} z e^{i q \cdot z}\left\langle A\left(p_{A}\right)\right| J_{\mu}(z)\left|X\left(p_{X}\right)\right\rangle\left\langle X\left(p_{X}\right)\right| J_{\nu}(0)\left|A\left(p_{A}\right)\right\rangle \\
& =-g_{\mu \nu} \tilde{W}_{1}+\frac{p_{A \mu} p_{A \nu}}{M_{A}^{2}} \tilde{W}_{2}-i \epsilon_{\mu \nu \rho \sigma} \frac{p_{A}^{\rho} q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\
& +\frac{q_{\mu} q_{\nu}}{M_{A}^{2}} \tilde{W}_{4}+\frac{p_{A \mu} q_{\nu}+p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{5}+\frac{p_{A \mu} q_{\nu}-p_{A \nu} q_{\mu}}{M_{A}^{2}} \tilde{W}_{6}
\end{aligned}
$$

Relation between W and T

Analytical structure of \tilde{T}^{A} in the complex ω_{A} plane:

- \tilde{T}^{A} converges in the region $\left|\omega_{A}\right|<1$ where $\omega_{A}=x_{A}^{-1}$ (short distance region)
- The discontinuity in the physical DIS region $\left|\omega_{A}\right|>1$ is related to \tilde{W}^{A} (after analytic continuation)

$$
\begin{aligned}
& \left.\tilde{T}_{\mu \nu}^{A}\left(p_{A}, q\right)\right|_{\left(1 / x_{A}\right)-i \varepsilon} ^{\left(1 / x_{A}\right)+i \varepsilon}=4 \pi \quad \tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right), \quad \text { for } \quad x_{A}>0 \\
& \left.\tilde{T}_{\mu \nu}^{A}\left(p_{A}, q\right)\right|_{\left(1 / x_{A}\right)+i \varepsilon} ^{\left(1 / x_{A}\right)-i \varepsilon}=4 \pi\left[\tilde{W}_{\mu \nu}^{A}\left(p_{A},-q\right)\right]^{\dagger}, \quad \text { for } \quad x_{A}<0
\end{aligned}
$$

Relation between W and T

$$
\begin{aligned}
& \left.\tilde{T}_{\mu \nu}^{A}\left(p_{A}, q\right)\right|_{\left(1 / x_{A}\right)-i \varepsilon} ^{\left(1 / x_{A}\right)+i \varepsilon}=4 \pi \tilde{W}_{\mu \nu}^{A}\left(p_{A}, q\right), \quad \text { for } \quad x_{A}>0, \\
& \left.\tilde{T}_{\mu \nu}^{A}\left(p_{A}, q\right)\right|_{\left(1 / x_{A}\right)+i \varepsilon} ^{\left(1 / x_{A}\right)-i \varepsilon}=4 \pi\left[\tilde{W}_{\mu \nu}^{A}\left(p_{A},-q\right)\right]^{\dagger}, \quad \text { for } \quad x_{A}<0
\end{aligned}
$$

An important consequence is the following link between individual $\Delta \tilde{T}_{i}^{A}$ and the Mellin moments of the structure functions

$$
\Delta \tilde{T}_{i}^{A} \sim \sum_{N} \tilde{F}_{i}^{A}\left(N, Q^{2}\right) x_{A}^{-N}
$$

Operator Product Expansion (OPE)

There are two different expansions:

a) short distance expansion

$$
A(x) B(0) \underbrace{\simeq}_{x_{\mu} \rightarrow 0} \sum_{i} C_{i}(x) O_{i}(x / 2)
$$

b) light cone expansion

Light cone dominance of DIS hadronic tensor

$$
A(x / 2) B(-x / 2) \underbrace{\simeq}_{x^{2} \rightarrow 0} \sum_{j, i} C_{i}^{(j)}(x) x^{\mu_{1}} \cdots x^{\mu_{j}} O_{\mu_{1} \cdots \mu_{j}}^{(j, i)}(0)
$$

local ops. of definite spin j
Wilson coefficients
(symmetric traceless tensors of rank j)

twist $=$ dimension - spin

Light cone ops. with lowest twist dominate!

Short distance expansion of $\tilde{T}_{\mu \nu}^{A}$

$$
\lim _{z \rightarrow 0} T_{\mu \nu}^{A}\left(p_{A}, q\right) \stackrel{\mathrm{OPE}}{=}-2 i \sum_{k, \iota} \underbrace{c_{\mu \nu \mu_{1} \ldots \mu_{k}}^{\tau=2, \iota}(q)}_{\text {Local operators }} \underbrace{\langle\mathcal{O}(\tau>2)}_{\left.\substack{ }\left(p_{A}\right)\left|\mathcal{O}_{\iota, \tau=2}^{\mu_{1} \ldots \mu_{k}}\right| A\left(p_{A}\right)\right\rangle}
$$

$$
\begin{aligned}
& \langle A| \mathcal{O}_{\iota, \tau=2}^{\mu_{1} \ldots \mu_{2 k}}|A\rangle=A_{\tau=2}^{2 k} \times \tilde{\Pi}^{\mu_{1} \ldots \mu_{2 k}} \\
& \text { where } \\
& \tilde{\Pi}^{\mu_{1} \cdots \mu_{2 k}} \text { : Traceless, } \\
& \text { symmetric rank-2k tensor } \\
& \tilde{\Pi}^{\mu_{1} \ldots \mu_{2 k}}=\sum_{j=0}^{k}(-1)^{j} \frac{(2 k-j)!}{2^{j}(2 k)!} \eta(j, 2 k-2 j) \underbrace{\{g \ldots g\}}_{j g^{\mu_{n} \mu_{m}{ }^{\prime} s}} \underbrace{\left\{p_{A} \ldots p_{A}\right\}}_{(2 k-2 j) p_{A}^{\mu_{n}{ }_{\prime}}}\left(p_{A}^{2}\right)^{j}
\end{aligned}
$$

$$
\begin{aligned}
& c_{\mu \nu \mu_{1}, \ldots, \mu_{2 k}}^{\tau=2, \iota}(q)=\left[-2 g_{\mu \nu} q_{\mu_{1}} q_{\mu_{2}} C_{1}^{2 k}+g_{\mu \mu_{1}} g_{\nu \mu_{2}} Q^{2} C_{2}^{2 k}-i \epsilon_{\mu \nu \alpha \beta} g_{\mu_{1}}^{\alpha} q^{\beta} q_{\mu_{2}} C_{3}^{2 k}\right. \\
& \left.+4 \frac{q_{\mu} q_{\nu}}{Q^{2}} q_{\mu_{1}} q_{\mu_{2}} C_{4}^{2 k}+2\left(g_{\mu \mu_{1}} q_{\nu} q_{\mu_{2}} \pm g_{\nu \mu_{1}} q_{\mu} q_{\mu_{2}}\right) C_{5,6}^{2 k}\right] \times \frac{2^{2 k}}{\left(Q^{2}\right)^{2 k}} \times\left(\prod_{m=3}^{2 k} q_{\mu_{m}}\right) .
\end{aligned}
$$

Short distance expansion of $\tilde{T}_{\mu \nu}^{A}$

Evaluating the contractions of Lorentz indices gives:

$$
\int_{0}^{1} d x_{A} x_{A}^{N-2} \tilde{F}_{2}^{A, \mathrm{TMC}}\left(x_{A}, Q^{2}\right)=\sum_{j=0}^{\infty}\left(\frac{M_{A}^{2}}{Q^{2}}\right)^{j} \frac{(N+j)!}{j!(N-2)!} \frac{C_{2}^{N+2 j} A_{\tau=2}^{N+2 j}}{(N+2 j)(N+2 j-1)}
$$

Similar for the other structure functions

The master equations in x-space are then obtained by inverse Mellin transformation

