Target mass corrections in lepton-nucleus DIS

Ingo Schienbein UGA/LPSC Grenoble

Based on R. Ruiz et al, arXiv:2301.07715

DIS 2023, Michigan State University, March 27-31, 2023

Introduction

- Deeply-inelastic scattering (DIS)
 - Key process for studying the structure of hadrons
 - Backbone of global analyses of parton distribution functions (PDFs)
 - DIS off nucleons and nuclei will be at the forefront again with high precision studies at the EIC, future neutrino facilities, ...
- Target mass corrections (TMC) to DIS structure functions
 - Improve description of high-x/low-Q DIS data
 - More precise data in this region will provide important tests of QCD
 - Timely to review again with particular focus on nuclear targets

Figure from IS et al, arXiv:0709.1775

Two major theoretical approaches to DIS

Operator Product Expansion (OPE)

- Georgi, Politzer '76: LO QCD
- Barbieri et al '76: LO+including quark masses
- De Rujula, Georgi, Politzer '77: NLO QCD

Parton model

- Ellis, Furmanski, Petronzio '83: LO+partonic transverse momentum ($k_T \neq 0$) Agreement of non-collinear parton approach with OPE at LO shown!
- Aivazis, Collins, Olness, Tung '93: TMCs in collinear parton model ($k_T = 0$)

• Theory not carved in stone!

- OPE proven only for simple scalar models
- Non-collinear parton model not covered by QCD factorisation theorems
- Threshold problem: TMC corrected structure functions do not vanish for $x \to 1$.

Master formula

$$F_{1}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}}{\xi_{N}r_{N}}\right) F_{1}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{M_{N}^{2}x_{N}^{2}}{Q^{2}r_{N}^{2}}\right) h_{2}^{A}(\xi_{N},Q^{2}) + \left(\frac{2M_{N}^{4}x_{N}^{3}}{Q^{4}r_{N}^{3}}\right) g_{2}^{A}(\xi_{N},Q^{2})$$

$$F_{2}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}^{2}}{\xi_{N}^{2}r_{N}^{3}}\right) F_{2}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{6M_{N}^{2}x_{N}^{3}}{Q^{2}r_{N}^{4}}\right) h_{2}^{A}(\xi_{N},Q^{2}) + \left(\frac{12M_{N}^{4}x_{N}^{4}}{Q^{4}r_{N}^{5}}\right) g_{2}^{A}(\xi_{N},Q^{2})$$

$$F_{3}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}}{\xi_{N}r_{N}^{2}}\right) F_{3}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{2M_{N}^{2}x_{N}^{2}}{Q^{2}r_{N}^{3}}\right) h_{3}^{A}(\xi_{N},Q^{2}) + 0$$

IS et al, A review of TMC, arXiv:0709.1775

- Nucleon mass M_N
- Nachtmann variable $\xi_N = 2x_N/(1 + r_N)$, $r_N = \sqrt{1 + 4x_N^2 M_N^2/Q^2}$
- $F_i^{A,(0)}$ standard parton model structure functions with $M_N=0$
- h_i^A, g_i^A convolution integrals over $F_i^{A,(0)}$
- Modular, easy to use (organising the rather complicated expressions in the OPE literature)
- Valid to any order in α_s , quark masses included in $F_i^{A,(0)}$, valid for nucleons and nuclei!

New review 2301.07715

- Reconsider TMC from OPE with particular focus on nuclear case
 - Attention to notation exhibiting kinematics
 - Consider conditions of light cone dominance for nuclei
 - Consider spin of target nucleus which can be different from spin-1/2 of nucleons
 - Present derivation of TMCs from OPE in much greater detail
 - Prove validity of TMC master equation for nuclei (Why does the nucleon mass M_N appear and not M_A ?)
- Consider full nuclear target:
 - No use of nucleonic degrees of freedom
 - Proper theoretical definition of nuclear structure functions and PDFs as they are intuitively used in the literature
- Parametrization of TMC accurate at the sub-percent level.
 Useful to calculate TMC to structure functions with any PDF set

Kinematics of lepton-nucleus DIS

Nucleus A	Nucleon N
$M_A = A M_N$	$M_N = M_A/A$
$p_A = A p_N$	$p_N = p_A/A$
$x_A = \frac{Q^2}{2p_A \cdot q} \equiv x_N / A$	$x_N = \frac{Q^2}{2p_N \cdot q} \equiv A x_A$
$x_A \in [0, 1]$	$x_N \in [0, A]$
$W_A^2 = (p_A + q)^2$	$W_N^2 = (p_N + q)^2$
$\nu_A = (q \cdot p_A)/M_A \equiv \nu_N$	$\nu_N = (q \cdot p_N)/M_N \equiv \nu_A$
$y_A = \nu_A / E \equiv y_N$	$y_N = \nu_N / E \equiv y_A$

Cross section

$d\sigma \sim L^{\mu\nu} \tilde{W}^{A}_{\mu\nu}$

Leptonic tensor calculable in pert. theory

Hadronic tensor not calculabe in pert. theory

Most general form in terms of structure functions:

$$\begin{split} \tilde{W}_{\mu\nu}^{A}(p_{A},q) & \equiv \frac{1}{4\pi} \oint d^{4}z \ e^{iq\cdot z} \langle A(p_{A})| J_{\mu}(z) | X(p_{X}) \rangle \langle X(p_{X})| J_{\nu}(0) | A(p_{A}) \rangle \\ & = -g_{\mu\nu} \tilde{W}_{1} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}} \tilde{W}_{2} - i\epsilon_{\mu\nu\rho\sigma} \frac{p_{A}^{\rho}q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\ & + \frac{q_{\mu}q_{\nu}}{M_{A}^{2}} \tilde{W}_{4} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{5} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} \ . \end{split}$$

$$\begin{aligned}
\{\tilde{F}_{1}, \ \tilde{F}_{2}, \ \tilde{F}_{3}, \ \tilde{F}_{4}, \ \tilde{F}_{5,6}\} \\
&= \left\{\tilde{W}_{1}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}}\tilde{W}_{2}, \ \frac{Q^{2}}{x_{A}M_{A}^{2}}\tilde{W}_{3}, \ \frac{Q^{2}}{2M_{A}^{2}}\tilde{W}_{4}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}}\tilde{W}_{5,6}\right\}
\end{aligned}$$

Most general form in terms of structure functions:

$$\begin{split} \tilde{W}_{\mu\nu}^{A}(p_{A},q) & \equiv \frac{1}{4\pi} \oint d^{4}z \ e^{iq\cdot z} \langle A(p_{A})| J_{\mu}(z) | X(p_{X}) \rangle \langle X(p_{X})| J_{\nu}(0) | A(p_{A}) \rangle \\ & = -g_{\mu\nu} \tilde{W}_{1} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}} \tilde{W}_{2} - i\epsilon_{\mu\nu\rho\sigma} \frac{p_{A}^{\rho}q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\ & + \frac{q_{\mu}q_{\nu}}{M_{A}^{2}} \tilde{W}_{4} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{5} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} \ . \end{split}$$

$$d\sigma_{|W_{4}} \propto m_{l}^{2} \qquad d\sigma_{|W_{5}} \propto m_{l}^{2} \qquad d\sigma_{|W_{6}} = 0$$

$$\begin{aligned}
\{\tilde{F}_{1}, \ \tilde{F}_{2}, \ \tilde{F}_{3}, \ \tilde{F}_{4}, \ \tilde{F}_{5,6}\} \\
&= \left\{\tilde{W}_{1}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}}\tilde{W}_{2}, \ \frac{Q^{2}}{x_{A}M_{A}^{2}}\tilde{W}_{3}, \ \frac{Q^{2}}{2M_{A}^{2}}\tilde{W}_{4}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}}\tilde{W}_{5,6}\right\}
\end{aligned}$$

Most general form in terms of structure functions:

$$\begin{split} \tilde{W}_{\mu\nu}^{A}(p_{A},q) & \equiv \frac{1}{4\pi} \oint d^{4}z \ e^{iq\cdot z} \langle A(p_{A})| J_{\mu}(z) | X(p_{X}) \rangle \langle X(p_{X})| J_{\nu}(0) | A(p_{A}) \rangle \\ & = -g_{\mu\nu} \tilde{W}_{1} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}} \tilde{W}_{2} - i\epsilon_{\mu\nu\rho\sigma} \frac{p_{A}^{\rho}q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\ & + \frac{q_{\mu}q_{\nu}}{M_{A}^{2}} \tilde{W}_{4} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{5} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} \ . \\ & d\sigma_{|W_{4}} \propto m_{l}^{2} \qquad d\sigma_{|W_{5}} \propto m_{l}^{2} \qquad d\sigma_{|W_{6}} = 0 \end{split}$$

$$\begin{split} \left\{ \tilde{F}_{1}, \ \tilde{F}_{2}, \ \tilde{F}_{3}, \ \tilde{F}_{4}, \ \tilde{F}_{5,6} \right\} \\ &= \left\{ \tilde{W}_{1}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}} \tilde{W}_{2}, \ \frac{Q^{2}}{x_{A}M_{A}^{2}} \tilde{W}_{3}, \ \frac{Q^{2}}{2M_{A}^{2}} \tilde{W}_{4}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}} \tilde{W}_{5,6} \right\} \end{split}$$

Most general form in terms of structure functions:

$$\begin{split} \tilde{W}_{\mu\nu}^{A}(p_{A},q) & \equiv \frac{1}{4\pi} \oint d^{4}z \ e^{iq\cdot z} \langle A(p_{A})| J_{\mu}(z) | X(p_{X}) \rangle \langle X(p_{X})| J_{\nu}(0) | A(p_{A}) \rangle \\ & = -g_{\mu\nu} \tilde{W}_{1} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}} \tilde{W}_{2} - i\epsilon_{\mu\nu\rho\sigma} \frac{p_{A}^{\rho}q^{\sigma}}{M_{A}^{2}} \tilde{W}_{3} \\ & + \frac{q_{\mu}q_{\nu}}{M_{A}^{2}} \tilde{W}_{4} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{5} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M_{A}^{2}} \tilde{W}_{6} \ . \\ & d\sigma_{|W_{4}} \propto m_{l}^{2} \qquad d\sigma_{|W_{5}} \propto m_{l}^{2} \qquad d\sigma_{|W_{6}} = 0 \end{split}$$

$$\left\{ \tilde{F}_{1}, \ \tilde{F}_{2}, \ \tilde{F}_{3}, \ \tilde{F}_{4}, \ \tilde{F}_{5,6} \right\}$$

$$= \left\{ \tilde{W}_{1}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}} \tilde{W}_{2}, \ \frac{Q^{2}}{x_{A}M_{A}^{2}} \tilde{W}_{3}, \ \frac{Q^{2}}{2M_{A}^{2}} \tilde{W}_{4}, \ \frac{Q^{2}}{2x_{A}M_{A}^{2}} \tilde{W}_{5,6} \right\}$$

Master formula from OPE

$$\begin{split} \tilde{F}_{1}^{A,\text{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}}\right) \tilde{F}_{1}^{A,(0)}(\xi_{A}) + \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{2}}\right) \tilde{h}_{2}^{A}(\xi_{A}) + \left(\frac{2M_{A}^{4}x_{A}^{3}}{Q^{4}r_{A}^{3}}\right) \tilde{g}_{2}^{A}(\xi_{A}) \,, \\ \tilde{F}_{2}^{A,\text{TMC}}(x_{A}) &= \left(\frac{x_{A}^{2}}{\xi_{A}^{2}r_{A}^{3}}\right) \tilde{F}_{2}^{A,(0)}(\xi_{A}) + \left(\frac{6M_{A}^{2}x_{A}^{3}}{Q^{2}r_{A}^{4}}\right) \tilde{h}_{2}^{A}(\xi_{A}) + \left(\frac{12M_{A}^{4}x_{A}^{4}}{Q^{4}r_{A}^{5}}\right) \tilde{g}_{2}^{A}(\xi_{A}) \,, \\ \tilde{F}_{3}^{A,\text{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}^{2}}\right) \tilde{F}_{3}^{A,(0)}(\xi_{A}) + \left(\frac{2M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \tilde{h}_{3}^{A}(\xi_{A}) \,, \end{split}$$

- Nucleus mass M_N
- Nachtmann variable $\xi_A = 2x_A/(1 + r_A)$, $r_A = \sqrt{1 + 4x_A^2 M_A^2/Q^2}$
- $\tilde{F}_i^{A,(0)}(x_A,Q^2)$ standard parton model structure functions with $M_A=0$
- $\tilde{h}_i^A, \tilde{g}_i^A$ convolution integrals over $\tilde{F}_i^{A,(0)}$
- Same structure as master formula for nucleons. Detailed derivation.

From nuclear to averaged nucleon kinematics

Nucleus A	Nucleon N
$M_A = A M_N$	$M_N = M_A/A$
$p_A = A p_N$	$p_N = p_A/A$
$x_A = \frac{Q^2}{2p_A \cdot q} \equiv x_N / A$	$x_N = \frac{Q^2}{2p_N \cdot q} \equiv A x_A$
$x_A \in [0, 1]$	$x_N \in [0, A]$
$W_A^2 = (p_A + q)^2$	$W_N^2 = (p_N + q)^2$
$\nu_A = (q \cdot p_A)/M_A \equiv \nu_N$	$\nu_N = (q \cdot p_N)/M_N \equiv \nu_A$
$y_A = \nu_A / E \equiv y_N$	$y_N = \nu_N / E \equiv y_A$

Nachtmann Variable & Hadronic Mass

$r_A = \sqrt{1 + \frac{4x_A^2 M_A^2}{Q^2}} \equiv r_N$	$r_N = \sqrt{1 + \frac{4x_N^2 M_N^2}{Q^2}} \equiv r_A$
$\xi_A = R_M x_A \equiv \xi_N / A$	$\xi_N = R_M x_N \equiv A \xi_A$
$\xi_A \in [0,1]$	$\xi_N \in [0, A]$

Since
$$r_A = r_N \equiv r$$
, then $R_M = \frac{2}{1 + r_{A,N}}$

Also,
$$\xi_A/x_A = \xi_N/x_N = R_M = \frac{2}{1+r}$$

We define $\varepsilon = (xM/Q)$.

The M_A -terms are always Accompanied by x_A factors:

$$\frac{M_A^{2j} x_A^{2j}}{Q^{2j}} = \frac{(M_N^{2j} A^{2j}) x_A^{2j}}{Q^{2j}} = \frac{M_N^{2j} x_N^{2j}}{Q^{2j}}$$

Rescaled structure functions:

$$A W_{\mu\nu}^A(p_N,q) \coloneqq \tilde{W}_{\mu\nu}^A(p_A,q)$$

$$F_2^A(x_N, Q^2) := \tilde{F}_2^A(x_A, Q^2)$$

$$x_N F_{1,3}^A(x_N, Q^2) := x_A \tilde{F}_{1,3}^A(x_A, Q^2)$$

From nuclear to averaged nucleon kinematics

One easily finds for the convolution integrals:

$$\tilde{h}_{2}^{A}(\xi_{A}) = \int_{\xi_{A}}^{1} du_{A} \frac{\tilde{F}_{2}^{A(0)}(u_{A})}{u_{A}^{2}} = A \int_{\xi_{N}}^{A} du_{N} \frac{F_{2}^{A(0)}(u_{N})}{u_{N}^{2}} =: Ah_{2}^{A}(\xi_{N})$$

$$\tilde{h}_{3}^{A}(\xi_{A}) = \int_{\xi_{A}}^{1} du_{A} \frac{\tilde{F}_{3}^{A(0)}(u_{A})}{u_{A}} = A \int_{\xi_{N}}^{A} du_{N} \frac{F_{3}^{A(0)}(u_{N})}{u_{N}} =: Ah_{3}^{A}(\xi_{N})$$

$$\tilde{g}_{2}^{A}(\xi_{A}) = \int_{\xi_{A}}^{1} du_{A} \tilde{h}_{2}^{A}(u_{A}) = \frac{1}{A} \int_{\xi_{N}}^{A} du_{N} Ah_{2}^{A}(u_{N}) =: g_{2}^{A}(\xi_{N})$$

With these expressions and $x_N=Ax_A$, $\xi_N=A\xi_A$, $r_A=r_N$, $M_A=AM_N$

$$F_{1}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}}{\xi_{N}r_{N}}\right) F_{1}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{M_{N}^{2}x_{N}^{2}}{Q^{2}r_{N}^{2}}\right) h_{2}^{A}(\xi_{N},Q^{2}) + \left(\frac{2M_{N}^{4}x_{N}^{3}}{Q^{4}r_{N}^{3}}\right) g_{2}^{A}(\xi_{N},Q^{2})$$

$$F_{2}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}^{2}}{\xi_{N}^{2}r_{N}^{3}}\right) F_{2}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{6M_{N}^{2}x_{N}^{3}}{Q^{2}r_{N}^{4}}\right) h_{2}^{A}(\xi_{N},Q^{2}) + \left(\frac{12M_{N}^{4}x_{N}^{4}}{Q^{4}r_{N}^{5}}\right) g_{2}^{A}(\xi_{N},Q^{2})$$

$$F_{3}^{A,\text{TMC}}(x_{N},Q^{2}) = \left(\frac{x_{N}}{\xi_{N}r_{N}^{2}}\right) F_{3}^{A,(0)}(\xi_{N},Q^{2}) + \left(\frac{2M_{N}^{2}x_{N}^{2}}{Q^{2}r_{N}^{3}}\right) h_{3}^{A}(\xi_{N},Q^{2}) + 0$$

Discussion

- Everything defined in terms of a nuclear state, QCD operators and a kinematics rescaling
- No use of nucleonic degrees of freedom was made
- Similarly, nuclear PDFs are introduced in the variable x_A .
 - DGLAP and Sum rules in x_A
- Then, one can define the rescaling to the variable x_N : $f_i^A(x_N)dx_N := \tilde{f}_i^A(x_A)dx_A$
 - DGLAP and Sum rules in x_N
- Again no use of (bound) nucleon PDFs, just nuclear PDFs (which is what is determined by data!)
- The rescaling at the hadronic level and the parsonic level are fully consistent

Which terms are included?

- Master formula resums leading twist TMC to all orders in $(M_N^2/Q^2)^n$
- Higher twist terms $(Q_0^2/Q^2)^n$ not included where Q_0 is a hadronic scale (To be modelled separately)

$F_i^{\text{TMC}}(x_N, Q^2)/F_i^{\text{TMC,leading}}(x_N, Q^2)$

- Ratios very insensitive to nuclear A except A=I (dashed, dotted)
- Simple parametrization of full TMC for everybody to use in numerical calculations (see 2301.07715 for details)

Summary

- New review of TMC from OPE with particular focus on nuclear case [2301.07715]
 - Attention to notation exhibiting kinematics
 - Consider conditions of light cone dominance for nuclei
 - Consider spin of target nucleus which can be different from spin-1/2 of nucleons
 - Present derivation of TMCs from OPE in much greater detail
 - Prove validity of TMC master equation for nuclei
- Consider full nuclear target:
 - No use of nucleonic degrees of freedom
 - Proper theoretical definition of nuclear structure functions and PDFs as they are intuitively used in the literature
- Parametrization of TMC accurate at the sub-percent level.
 Useful to calculate TMC to structure functions with any PDF set

"Yesterday's sensation is today's calibration and tomorrow's backup slide"

-Richard Feynman (modified)

Light cone dominance of nuclear DIS

$$\tilde{W}_{\mu\nu}^{A}(p_A,q) = \frac{1}{4\pi} \int d^4z \ e^{iq\cdot z} \langle A|J_{XA\mu}^{\dagger}(z) \ J_{XA\nu}(0)|A\rangle$$

DIS limit:

$$Q^2 \to \infty$$
, $\nu_A \to \infty$, such that $\frac{Q^2}{\nu_A} = 2M_A x_A$ is fixed

Dominant contribution to Fourier integral: $0 \le z^2 \le \text{const}/Q^2$

What does the DIS limit mean in practice?

Nucleon case (see textbook by Muta): $Q^2 \sim p_N \cdot q \gtrsim M_N^2$

Nuclear case (naively): $Q^2 \sim p_A \cdot q \gtrsim M_A^2$ would suggest very large Q^2

We argue instead: $Q^2 \sim \nu_A \gtrsim \Lambda_{\rm had}^2 \gg \Lambda_{\rm QCD}^2$

Forward Compton scattering amplitude

$$\tilde{T}_{\mu\nu}^{A}(p_{A},q) \equiv \int d^{4}z \ e^{iq\cdot z} \langle A|\mathcal{T}J_{A\mu}^{\dagger}(z) \ J_{A\nu}(0)|A\rangle ,$$

$$= -g_{\mu\nu}\Delta\tilde{T}_{1}^{A} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}}\Delta\tilde{T}_{2}^{A} - i\epsilon_{\mu\nu\alpha\beta}\frac{p_{A}^{\alpha}q^{\beta}}{M_{A}^{2}}\Delta\tilde{T}_{3}^{A}$$

$$+ \frac{q_{\mu}q_{\nu}}{M_{A}^{2}}\Delta\tilde{T}_{4}^{A} + \frac{(p_{A\mu}q_{\nu} \pm p_{A\nu}q_{\mu})}{M_{A}^{2}}\Delta\tilde{T}_{5,6}^{A} ,$$

For comparison

$$\tilde{W}_{\mu\nu}^{A}(p_{A},q) \equiv \frac{1}{4\pi} \oint d^{4}z \ e^{iq\cdot z} \langle A(p_{A})|J_{\mu}(z)|X(p_{X})\rangle \langle X(p_{X})|J_{\nu}(0)|A(p_{A})\rangle
= -g_{\mu\nu}\tilde{W}_{1} + \frac{p_{A\mu}p_{A\nu}}{M_{A}^{2}}\tilde{W}_{2} - i\epsilon_{\mu\nu\rho\sigma}\frac{p_{A}^{\rho}q^{\sigma}}{M_{A}^{2}}\tilde{W}_{3}
+ \frac{q_{\mu}q_{\nu}}{M_{A}^{2}}\tilde{W}_{4} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M_{A}^{2}}\tilde{W}_{5} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M_{A}^{2}}\tilde{W}_{6} .$$

Relation between W and T

Analytical structure of \tilde{T}^A in the complex ω_A plane:

- \tilde{T}^A converges in the region $|\omega_A| < 1$ where $\omega_A = x_A^{-1}$ (short distance region)
- The discontinuity in the physical DIS region $|\omega_A| > 1$ is related to \tilde{W}^A (after analytic continuation)

$$\tilde{T}_{\mu\nu}^{A}(p_{A},q)\Big|_{(1/x_{A})-i\varepsilon}^{(1/x_{A})+i\varepsilon} = 4\pi \ \tilde{W}_{\mu\nu}^{A}(p_{A},q), \quad \text{for} \quad x_{A} > 0 ,$$

$$\tilde{T}_{\mu\nu}^{A}(p_{A},q)\Big|_{(1/x_{A})-i\varepsilon}^{(1/x_{A})-i\varepsilon} = 4\pi \ \left[\tilde{W}_{\mu\nu}^{A}(p_{A},-q)\right]^{\dagger}, \quad \text{for} \quad x_{A} < 0$$

Relation between W and T

$$\tilde{T}_{\mu\nu}^{A}(p_{A},q)\Big|_{(1/x_{A})-i\varepsilon}^{(1/x_{A})+i\varepsilon} = 4\pi \ \tilde{W}_{\mu\nu}^{A}(p_{A},q), \quad \text{for} \quad x_{A} > 0 ,$$

$$\tilde{T}_{\mu\nu}^{A}(p_{A},q)\Big|_{(1/x_{A})+i\varepsilon}^{(1/x_{A})-i\varepsilon} = 4\pi \ \left[\tilde{W}_{\mu\nu}^{A}(p_{A},-q)\right]^{\dagger}, \quad \text{for} \quad x_{A} < 0$$

An important consequence is the following link between individual $\Delta \tilde{T}_i^A$ and the Mellin moments of the structure functions

$$\Delta \tilde{T}_i^A \sim \sum_N \tilde{F}_i^A(N, Q^2) x_A^{-N}$$

Operator Product Expansion (OPE)

There are two different expansions:

a) short distance expansion

$$A(x)B(0) \underset{x_{\mu} \to 0}{\simeq} \sum_{i} C_{i}(x)O_{i}(x/2)$$

b) light cone expansion

 $A(x/2)B(-x/2) \underbrace{\simeq}_{x^2 \to 0} \sum_{j,i} C_i^{(j)}(x) x^{\mu_1} \cdots x^{\mu_j} O_{\mu_1 \cdots \mu_j}^{(j,i)}(0)$

Light cone dominance of DIS hadronic tensor

Wilson coefficients

local ops. of definite spin j (symmetric traceless tensors of rank j)

$$C_i^{(j)} \underbrace{\propto}_{x^2 \to 0} (\sqrt{x^2})^{d_{j,i} - j - d_A - d_B}$$

Light cone ops. with lowest twist dominate!

twist = dimension - spin

Short distance expansion of $ilde{T}^A_{\mu u}$

$$\lim_{z\to 0} T_{\mu\nu}^A(p_A,q) \stackrel{\mathrm{OPE}}{=} -2i \sum_{k,\iota} \boxed{c_{\mu\nu\mu_1...\mu_k}^{\tau=2,\iota}(q)} \boxed{\langle A(p_A)|\mathcal{O}_{\iota,\tau=2}^{\mu_1...\mu_k}|A(p_A)\rangle} + \mathcal{O}(\tau > 2)$$
Local operators

$$\begin{array}{c} \langle A|\mathcal{O}^{\mu_1\ldots\mu_{2k}}_{\iota,\tau=2}|A\rangle = A^{2k}_{\tau=2} \times \tilde{\Pi}^{\mu_1\ldots\mu_{2k}} \\ \tilde{\Pi}^{\mu_1\ldots\mu_{2k}} = \sum\limits_{j=0}^k (-1)^j \; \frac{(2k-j)!}{2^j(2k)!} \; \eta(j,2k-2j) \; \underbrace{\{g...g\}}_{j \; g^{\mu_n\mu_m}'s} \; \underbrace{\{p_A...p_A\}}_{(2k-2j)} \; p^{\mu_n'}_{A} s \end{array}$$

$$c_{\mu\nu\mu_{1},...,\mu_{2k}}^{\tau=2,\iota}(q) = \left[-2g_{\mu\nu}q_{\mu_{1}}q_{\mu_{2}}C_{1}^{2k} + g_{\mu\mu_{1}}g_{\nu\mu_{2}}Q^{2}C_{2}^{2k} - i\epsilon_{\mu\nu\alpha\beta}g_{\mu_{1}}^{\alpha}q^{\beta}q_{\mu_{2}}C_{3}^{2k} \right] + 4\frac{q_{\mu}q_{\nu}}{Q^{2}}q_{\mu_{1}}q_{\mu_{2}}C_{4}^{2k} + 2(g_{\mu\mu_{1}}q_{\nu}q_{\mu_{2}} \pm g_{\nu\mu_{1}}q_{\mu}q_{\mu_{2}})C_{5,6}^{2k} \times \left(\prod_{m=3}^{2k}q_{\mu_{m}}\right).$$

Short distance expansion of $ilde{T}^A_{\mu\nu}$

Evaluating the contractions of Lorentz indices gives:

$$\int_0^1 dx_A \, x_A^{N-2} \tilde{F}_2^{A,\text{TMC}}(x_A, Q^2) = \sum_{j=0}^{\infty} \left(\frac{M_A^2}{Q^2}\right)^j \frac{(N+j)!}{j! \ (N-2)!} \ \frac{C_2^{N+2j} A_{\tau=2}^{N+2j}}{(N+2j)(N+2j-1)}$$

Similar for the other structure functions

The master equations in x-space are then obtained by inverse Mellin transformation