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Motivation

• PDF fitting groups have to contend with tension in data
• For example, see plenary talk by T. Cridge or arXiv:1905.0695
• Many strategies to deal with this: For example, the use of tolerance Δ𝜒! = 𝑇!

• This talk will describe the Gaussian Mixture Model (GMM) and how it 
can be applied to both 
• finding inconsistencies 
• as well as provide a statistical model to determine uncertainties
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https://arxiv.org/pdf/1905.06957.pdf


What is the Gaussian Mixture Model?

• Widely used an unsupervised machine learning technique
• Can be used to used to classify PDF data

• Class of Finite Mixture Models
• https://doi.org/10.1146/annurev-statistics-031017-100325

• Widely used in astronomy and astrophysics to distinguish between different 
sources in the sky 

• First proposed by Karl Pearson (1894) – to study characteristics of a population of 
crabs

• Focus of this talk: How can this machine learning technique be used as a statistical 
model for uncertainties in PDFs?
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https://doi.org/10.1146/annurev-statistics-031017-100325


Outline

• Motivation for GMM use in PDFs 
• Description of use of GMM in a simple 1-D example
• Demonstrate idea with a toy model of PDFs
• Summary
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Measuring Mass (Weight) PHY-101 Lab

• Measure mass of W-boson
• Repeat measurement several times
• Minimize -log-likelihood or loss function

• 𝜒! = ∑"
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• Determine best-fit value

• 𝑚) = 𝜇 = 80.36 ± 0.016 𝐺𝑒𝑉

ATLAS-CONF-2023-004
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https://cds.cern.ch/record/2853290


Measuring Mass (Weight) PHY-101 Lab

Manufactured by CDF Manufactured by ATLAS

Improve precision: Repeat measurements 
with more precise balance CDF Science 376 (2022)

𝑚)
*+, = 80.433 ± 0.009 𝐺𝑒𝑉

𝑚)
-./-0 = 80.36 ± 0.016 𝐺𝑒𝑉 5

https://inspirehep.net/literature/2064224


Measuring Mass (Weight) PHY-101 Lab
• How should we combine these two discrepant measurements to give one 

value of mass?
• Attempt #1: Let’s repeat earlier exercise

• Minimize loss function

• 𝜒' = ∑(
) *+! "

,!
"

• 𝑚- = 80.415 ± 0.011 𝐺𝑒𝑉

• 2𝜎 band does not cover both means
• What should we do?

• Usual proposal
• Increase tolerance Δ𝜒! = 𝑇!; 𝑇 > 1
• Does not provide a faithful representation of the probability distribution of 𝑚), 

drawn from our sample of experiments 6



Shortcomings of our usual proposal
• Why didn’t our usual approach reproduce the probability distribution 

function for 𝑚/ ?
• In this simple example

• We ignored individual likelihoods from  each experiment
• We minimized the 𝜒! which is

• Just like taking the weighted mean
• And adding errors in quadrature
• Then defining a new gaussian likelihood (green)
• Starting assumption is that 𝑚- likelihood is a single gaussian
• Good assumption if data is consistent

• Attempt #2: New proposal
• Combine likelihoods
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Combining Likelihoods – Gaussian Mixture Model

• Start by parameterizing the likelihood as a 
sum of Gaussians 

• In this simple example we know there are two 
Gaussians, i.e. K= 2

• In general, this is something that needs to be 
determined – discussed later

• Introduced a new parameter 𝜔1 - weights
• Constraints on 𝜔.; ensures proper normalization and 

interpretation as a probability distribution function
• Proxy for our confidence in each experiment
• For simplicity we’ll use equal weights here
• In reality – it is an additional fit parameter

Combined 
Likelihood
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Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇𝜇 − 𝜎 𝜇 + 𝜎

Here we use the variance as an estimator for 
the standard error.
Alternatively, we could use the Observed 
Fisher Information Matrix 9Kirtimaan Mohan



Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇

𝜇 − 𝜎

𝜇 + 𝜎

Now, because we are used to it, it is possible 
to model this as a single Gaussian (green) –
but we must be careful - it is not a faithful 
representation of the likelihood. 10Kirtimaan Mohan



Application of GMM to a toy model of PDFs



Pseudo-data generation

“truth”

Central value

Uncertainty

Parameters of model: {𝑎2, 𝑎3, 𝑎!, 𝑎4, 𝑎5, 𝑎6}

Inconsistent Pseudo-data generated by 
starting with different values of 𝑎5 & 𝑎6

A toy model of PDFs with inconsistent data



Fits to pseudo-data

LS-A

LS-BLS-C

LS-A

LS-B

LS-CLS-A: Data set 1 only
LS-B: Data set 2 only
LS-C: Combines all 
data



Comparison with 
CTEQ-TEA criteria: 
Δ𝜒# = 37 ⇒ 68% 𝐶. 𝐿.

Fits to pseudo-data using the GMM

LS-A

LS-B

LS-C

GMM
“1𝜎”

GMM uncertainty ellipse spans both replica sets. Unlike 
usual 𝜒- method
Axis of ellipse is different – covers uncertainties from 
individual data sets
Tolerance criteria both over and  underestimates 
uncertainties in different regions



GMM reduces to the 𝝌𝟐 likelihood (K= 𝟏), when data is consistent  



How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC)
(Akaike, 1974) 
Bayesian Information Criterion (BIC)
Schwarz (Ann Stat 1978, 6:461–464)

Strong tension

Weak tension 
due to large 
uncertainty

Consistent but 
data fluctuated

Consistent - No 
fluctuation

Use the lowest values of AIC & 
BIC to determine the best value of 
K and avoids over-fitting.

10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136


Summary & Outlook
• Proposed the use of GMM, a well-known machine learning model, as a statistical model to 

estimate uncertainty in PDF fits
• Can also be used to classify PDF fitting data – unsupervised machine learning task

• Provides a way to faithfully combine likelihoods from different experiments as well as  
represent the likelihood of the PDF fit.

• The usual tolerance method overestimates errors in some regions and underestimates 
in others

• Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF 
uncertainty estimation
• Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn

• Presented the frequentist approach in this talk. Extends to the Bayesian approach as well.
• Here I only showed tension due to experimental inconsistencies, but this also applies to 

tension resulting from theoretical inadequacies.
• Next steps: Apply to real data and pdf fit.
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