A new statistical model for estimating PDF uncertainties

Kirtimaan Mohan – Michigan State University

with Mengshi Yan, Tie-Jiun Hou, Zhao Li & C.-P. Yuan To appear soon: arXiv: 2304:.xxxx

Motivation

- PDF fitting groups have to contend with tension in data
 - For example, see plenary talk by T. Cridge or arXiv:1905.0695
 - Many strategies to deal with this: For example, the use of tolerance ($\Delta \chi^2 = T^2$)
- This talk will describe the Gaussian Mixture Model (GMM) and how it can be applied to both
 - finding inconsistencies
 - as well as provide a statistical model to determine uncertainties

What is the Gaussian Mixture Model?

- Widely used an unsupervised machine learning technique
 - Can be used to used to classify PDF data
- Class of Finite Mixture Models
 - https://doi.org/10.1146/annurev-statistics-031017-100325
- Widely used in astronomy and astrophysics to distinguish between different sources in the sky
- First proposed by Karl Pearson (1894) to study characteristics of a population of crabs
- Focus of this talk: How can this machine learning technique be used as a statistical model for uncertainties in PDFs?

Outline

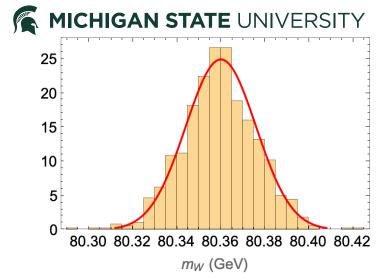
- Motivation for GMM use in PDFs
- Description of use of GMM in a simple 1-D example
- Demonstrate idea with a toy model of PDFs
- Summary

Measuring Mass (Weight) PHY-101 Lab

- Measure mass of W-boson
- Repeat measurement several times
- Minimize -log-likelihood or loss function

•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$
•
$$L = \prod_i \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi\sigma_i}}$$

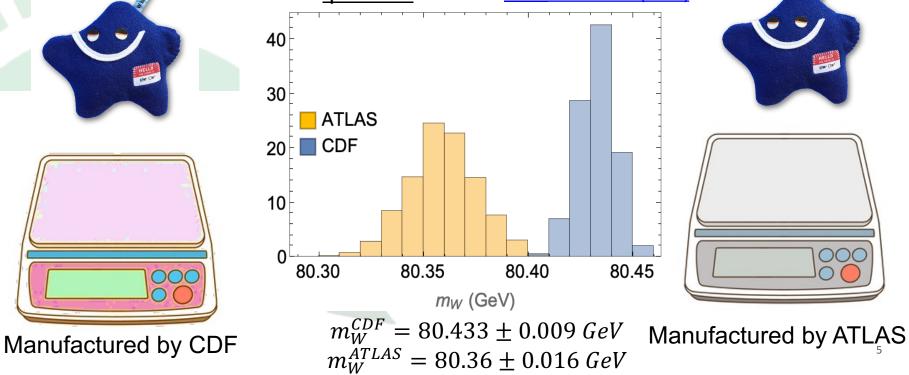
- Determine best-fit value
 - $m_W = \mu = 80.36 \pm 0.016 \, GeV$



Manufactured by ATLAS

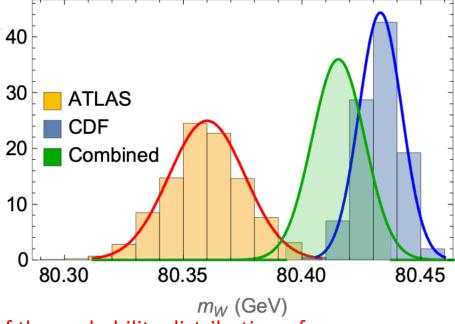
Measuring Mass (Weight) PHY-101 Lab

Improve precision: Repeat measurements with more precise balance <u>CDF Science 376 (2022)</u>



Measuring Mass (Weight) PHY-101 Lab

- How should we combine these two discrepant measurements to give one value of mass?
- Attempt #1: Let's repeat earlier exercise 40
 - Minimize loss function
 - $\chi^2 = \sum_i \frac{(\mu x_i)^2}{\sigma_i^2}$
 - $m_W = 80.415 \pm 0.011 \, GeV$
- 2σ band does not cover both means
 - What should we do?
- Usual proposal
 - Increase tolerance $\Delta \chi^2 = T^2$; T > 1
 - Does not provide a faithful representation of the probability distribution of m_W , drawn from our sample of experiments



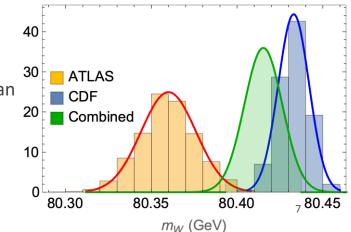
6

Shortcomings of our usual proposal

• Why didn't our usual approach reproduce the probability distribution function for m_W ?

Kirtimaan Mohan

- In this simple example
 - · We ignored individual likelihoods from each experiment
 - We minimized the χ^2 which is
 - Just like taking the weighted mean
 - And adding errors in quadrature
 - Then defining a new gaussian likelihood (green)
 - Starting assumption is that m_W likelihood is a single gaussian
 - Good assumption if data is consistent
- Attempt #2: New proposal
 - Combine likelihoods

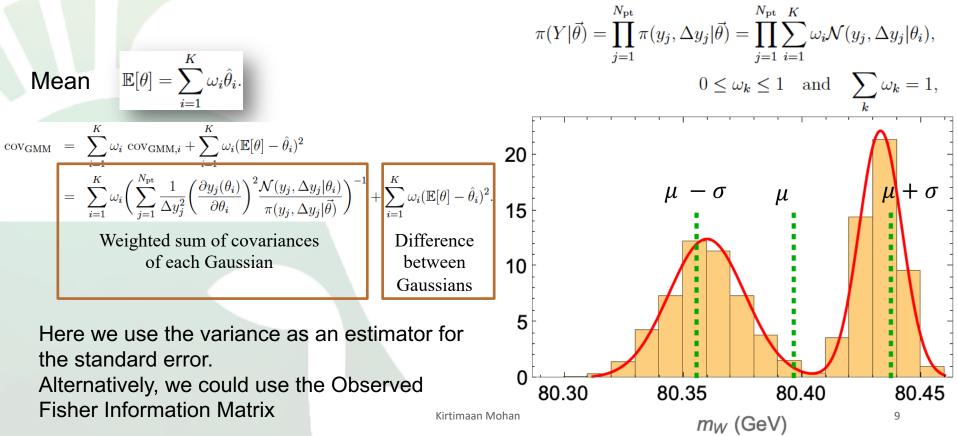


Combining Likelihoods – Gaussian Mixture Model

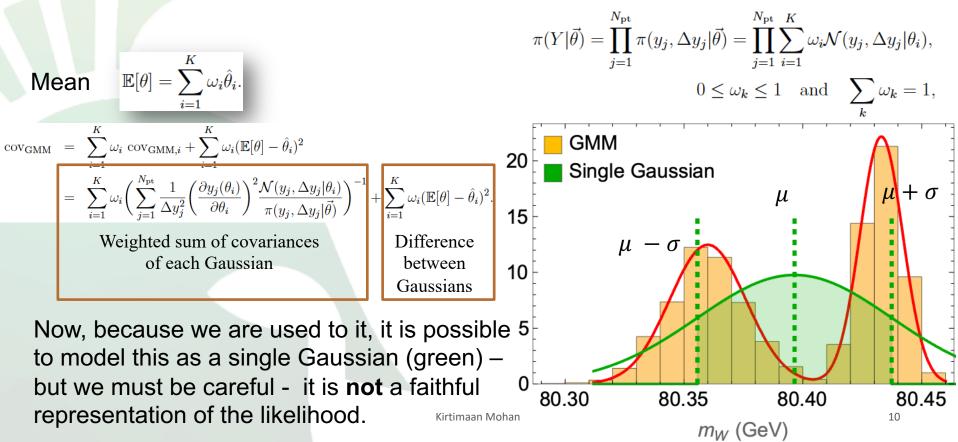
- Start by parameterizing the likelihood as a sum of Gaussians
- In this simple example we know there are two Gaussians, i.e. K= 2
- In general, this is something that needs to be determined discussed later
- Introduced a new parameter ω_k weights
- Constraints on ω_k ; ensures proper normalization and interpretation as a probability distribution function
- Proxy for our confidence in each experiment
- For simplicity we'll use equal weights here
- In reality it is an additional fit parameter

 $N_{\rm pt}$ K $\pi(Y|\vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \pi(y_j, \Delta y_j | \vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \sum_{j=1}^{N_{\text{pt}}} \omega_i \mathcal{N}(y_j, \Delta y_j | \theta_i),$ i=1 i=1 $0 \le \omega_k \le 1$ and \sum 20 Combined Likelihood 15 10 5 80.30 80.35 80.40 80.45 Kirtimaan Mohan m_W (GeV) 8

Determine mean and variance for GMM



Determine mean and variance for GMM

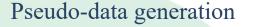


Application of GMM to a toy model of PDFs

A toy model of PDFs with inconsistent data

"truth"
$$g(x) = a_0 x^{a_1} (1-x)^{a_2} e^{xa_3} (1+xe^{a_4})^{a_5}$$

Parameters of model: $\{a_0, a_1, a_2, a_3, a_4, a_5\}$



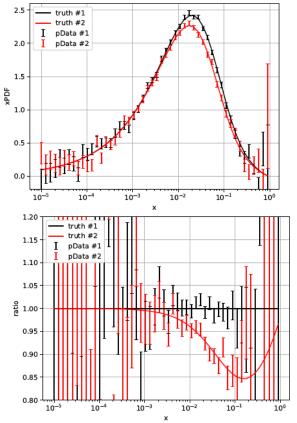
Central value $g_D(x) = (1 + r \times \Delta g(x))g(x)$

Uncertainty

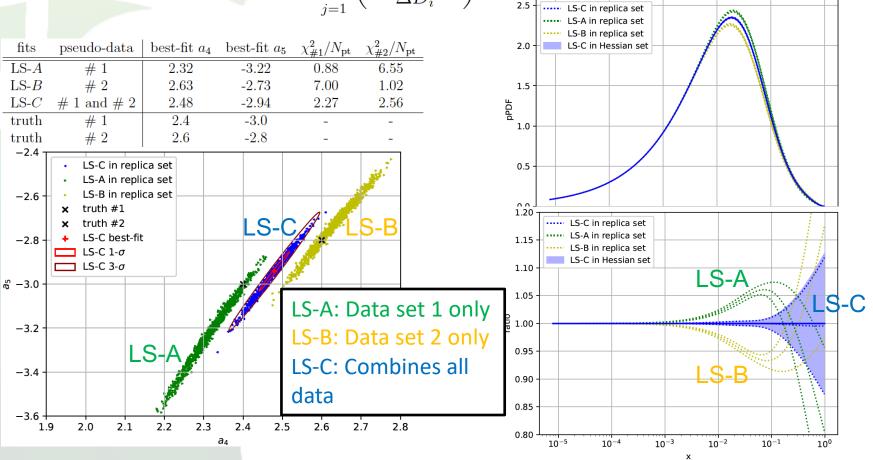
	V <i>S</i> (<i>Y</i>)								
	$N_{\rm pt}$	a_0	a_1	a_2	a_3	a_4	a_5		
pseudo-data #1	50	30	0.5	2.4	4.3	2.4	-3.0		
pseudo-data $#2$	50	30	0.5	2.4	4.3	2.6	-2.8		

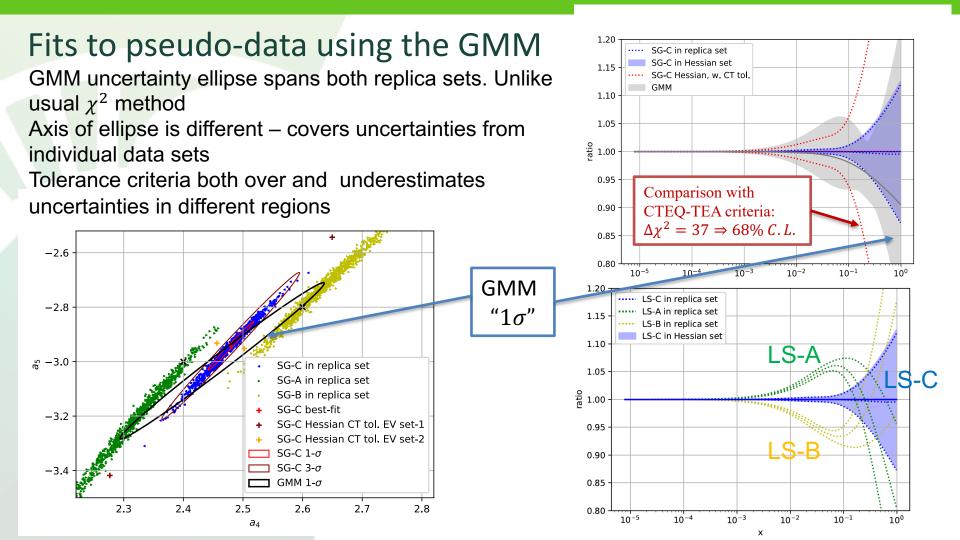
Inconsistent Pseudo-data generated by starting with different values of $a_4 \& a_5$

 $\Delta g(x) = \frac{\alpha}{\sqrt{a(x)}}$

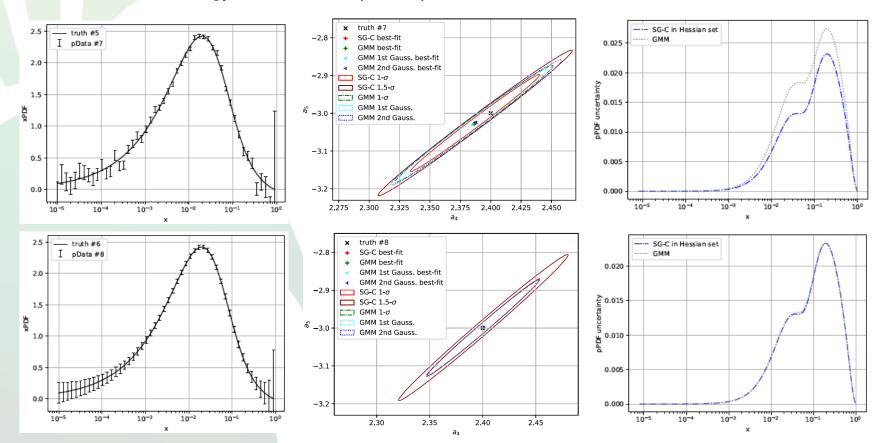


MICHIGAN STATE UNIVERSITY





GMM reduces to the χ^2 likelihood (K= 1), when data is consistent



How many Gaussians? How do we determine K?

				K = 1	K = 2	K = 3	K = 4		
Akaike Information Criterion (AIC)		case-1	AIC	-102.2	-203.6	-194.9	-187.9		
<u>(Akaike, 1974)</u>	Strong tension		BIC	-106.1	-211.2	-206.4	-203.2		
Bayesian Information Criterion (BIC)		$N_{\rm pt}{=}100$	$-\mathrm{log}L$	-55.0	-109.6	-109.2	-109.6		
<u>Schwarz (Ann Stat 1978, 6:461–464)</u>	Weak tension due to large uncertainty	case-2	AIC	-21.2	-15.4	-7.9	-0.2		
			BIC	-25.0	-23.0	-19.3	-15.5		
		$N_{\rm pt}{=}100$	$-\mathrm{log}L$	-14.5	-15.5	-15.7	-15.7		
		case-3	AIC	-219.3	-220.2	-212.8	-205.0		
AIC = $N_{\text{parm}} \log N_{\text{pt}} - 2\log L \Big _{\theta = \hat{\theta}}$,	Consistent but data fluctuated Consistent - No fluctuation		BIC	-223.2	-227.8	-224.3	-220.3		
BIC = $2N_{\text{parm}} - 2\log L _{\theta=\hat{\theta}}$. $N_{\text{parm}} = 2K + (K - 1).$		$N_{\rm pt} = 100$	$-\mathrm{log}L$	-113.6	-117.9	-117.9	-118.1		
		case-4	AIC	-117.8	-109.9	-102.1	-94.3		
			BIC	-121.6	-117.6	-113.6	-109.6		
		$N_{\rm pt}{=}50$	$-\mathrm{log}L$	-62.8	-62.8	-62.8	-62.8		
		case-5	AIC	-169.3	-161.5	-153.6	-145.8		
			BIC	-173.1	-169.1	-165.1	-161.1		
Use the lowest values of AIC &	Indetdation	$N_{\rm pt} = 50$	$-\mathrm{log}L$	-88.6	-88.6	-88.6	-88.6		
		$N_{ m pt}$		$N_{\rm pt}$ K					
BIC to determine the best value of	$\pi(Y \vec{\theta})$	$=\prod \pi(y_j)$	$\Delta y_i \vec{\theta} \rangle$	$= \prod \sum$	$\omega_{i}\mathcal{N}(y_{i})$	$\Delta u_i \theta_i$			
K and avoids over-fitting.	X 197	i=1	<i>J</i>	i=1 $i=1$	-) 5][*6]	,		
0		-							
$0 \le \omega_k \le 1$ and $\sum \omega_k = 1$,									
					1	k			

Summary & Outlook

- Proposed the use of GMM, a well-known machine learning model, as a statistical model to estimate uncertainty in PDF fits
 - Can also be used to classify PDF fitting data unsupervised machine learning task
- Provides a way to faithfully combine likelihoods from different experiments as well as represent the likelihood of the PDF fit.
 - The usual tolerance method overestimates errors in some regions and underestimates in others
- Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF uncertainty estimation
 - Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn
- Presented the frequentist approach in this talk. Extends to the Bayesian approach as well.
- Here I only showed tension due to experimental inconsistencies, but this also applies to tension resulting from theoretical inadequacies.
- Next steps: Apply to real data and pdf fit.