Future (possible) studies with the xFitter fitting framework

Francesco Giuli (on behalf of the xFitter Developers' team)

30th International Workshop on Deep Inelastic Scattering and Related Topics (MSU, USA)

28/03/2023

MORE IN PREPARATION!

The xFitter Project

- The <u>xFitter</u> project (former HERAFitter) is a <u>unique open-source QCD fit</u> framework
- GitLab repository (open access)
- This code allows users to:
 - extract PDFs from a large variety of data
 - assess the impact of new data on PDFs
 - > check the **consistency** of experimental data
 - test different theoretical assumptions

- > Several active developers between experimentalists and theorists
- More than 100 publications obtained using xFitter since the beginning of the project
- List of recent analyses by the xFitter Developers' Team:

Phys.Rev.D 104 (2021) 5, 056019, arXiv:2105.11306

Phys.Rev.D 102 (2020) 1, 014040, arXiv:2002.02902

Phys.Rev.D 104 (2021) 5, 056019, arXiv:2105.11306

Parton Distribution Functions of the Charged Pion Within The xFitter Framework

xFitter in a nutshell

- Parametrise PDFs at the initial scale:
 - several functional forms available
 - define PDF parameters to be minimised
- Evolve PDFs to the scales of the fitted data points:
 - DGLAP evolution up to NNLO in QCD and NLO QED (QCDNUM, APFEL, MELA)
 - non-DGLAP evolutions (dipole, CCFM)
- Compute predictions for the data points:
 - several mass schemes available in DIS (ZM-VFNS, ACOT, FONLL, TR, FFNS)
 - predictions for hadron-collider data through fast interfaces (APPLgrid, FastNLO).
- Comparison data-predictions via χ^2 :
 - multiple definitions available
 - consistent treatment of the systematic uncertainties
- Minimise the χ^2 w.r.t. the fitted parameters
 - using MINUIT or by Bayesian reweighting
- Useful drawing tools nice and colorful plots
- <u>Last xFitter workshop</u> in Orsay (9-11 March 2022)

xFitter release 2.2.0

WikiPolicy

FindPage HelpContents

RecentChanges

Immutable Page

Attachments

More Actions:

xFitter/DownloadPage

Wiki

Page

Info

xFitter

‡

xFitter / DownloadPage

Sample data files:

LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0

HERA: H1, ZEUS, Combined

Fixed Target: ... User Supplied: ... GitLab

Releases of the xFitter QCD analysis package

- The release notes can be found in this attachment: <code>@xFitter_release_notes.pdf</code> .
- Installation script for xFitter together with QCDNUM, APFEL, APPLGRID, LHAPDF @install-xFitter-2.0.1
 - New installation script from master branch @install-xfitter-master
- Data and theory files can be downloaded from gitlab ogitlab data repository

Date	Version	Files	Remarks
03/2022	2.2.0 FutureFreeze	∅ xfitter-2.2.0.tgz	Major update of evolution and reaction interfaces
05/2019	2.0.1 OldFashioned	⊕ xfitter-2.0.1.tgz	update/bug fix to 2.0.0 FrozenFrog
03/2017	2.0.0 FrozenFrog	⊕ xfitter-2.0.0.tgz	stable release with decoupled data and theory files

2.2.0 Future Freeze

https://www.xfitter.org/xFitter/xFitter/DownloadPage

- Release 2.2.0 released! (major update of evolution and reaction interfaces)
- > Script to install xFitter and all its dependencies: install-xFitter

Talking about the new release...

- Significant changes in the internal structure
- Re-written interfaces to minimizers, PDF parameterisation, decomposition, evolution and theory reactions
- Large changes in the user interface
- Data handling, format and chi2 calculation remain largely the same (but there are changes)
- Nicely summarized in this <u>talk</u> by S. Glazov
- Picture taken from Ivan Novikov's talk

PRD 104 (2021) 5 056019

- ➤ To perform the extraction of **pion fragmentation functions** (FFs) from single inclusive electron-positron annihilation (SIA) + BELLE13/20 data
- ightharpoonup SIA $e^+e^- \stackrel{\gamma^*,Z}{\longrightarrow} \pi^\pm X$ data allow to separate Δq and $\Delta \bar{q}$
- \triangleright We assume isospin symmetry $D_u^{\pi^+} = D_{\bar{d}}^{\pi^-}$ and $D_{\bar{u}}^{\pi^+} = D_d^{\pi^-}$
- \triangleright We assume the charge conjugate $D_i^{\pi^+} = D_i^{\pi^-}$ for all the flavour component
- \blacktriangleright We fit the flavour combinations $i=u^+,d^+,s^+,c^+,b^+$ and g
- \triangleright We parametrise FFs at a starting scale of $Q_0^2 = 5 \text{ GeV}^2$
- > 19 free parameters in total
- Fitted distributions: $\frac{d\sigma^h}{dz}$, $\frac{1}{\sigma_{\rm tot}} \frac{d\sigma^h}{dp_h}$, $\frac{s}{\beta} \frac{d\sigma^h}{dz}$, $\frac{1}{\beta \sigma_{\rm tot}} \frac{d\sigma^h}{dz}$, ... $(z = 2E_h/\sqrt{s})$

- Several fits ran:
 - > Fit A focuses on the impact of BELLE13 data (no BELLE20 data)
 - > Fit B focuses on the impact of BELLE20 data (no BELLE13 data)
 - > Fit C focuses on the impact of BELLE20 data without BaBar set (no BELLE13 data)
 - Fit D focuses on the impact of low-z BELLE20 data (No BELLE13 and BaBar data) z > 0.2

 \triangleright Fit E focuses on the impact of low-z BELLE20 and BaBar data (no BELLE 13 data) – z >

0.2 (BELLE20) and z > 0.1 (BaBar)

The inclusion of higher-order QCD corrections noticeably improves the quality of our fits

- Fits performed with enhanced tolerance T = $\sqrt{\Delta \chi^2}$ = 20
- ▶ FFS NLO and NNLO uncertainty bands overlap → perturbative uncertainties are under control (and reasonable choice of T)

- Comparison with NNLO NNFF1 and NLO JAM19 and DSEHS14
- Generally compatible with NNFF1 and DSEHS14 at larger z, but they differ at low-z (more pronounced for Fit E)
- > The gluon is generally compatible with NNFF1 (larger uncertainties)
- FFs generally have a different behaviour as compared to JAM19 they have much steeper slope at low-z for quarks, with the gluon lying above our curves for intermediate- to larger-z

More on mesons PDF

Charged pion PDF studied in PRD 102 (2020) 014040

$$xv(x) = A_v x^{B_v} (1-x)^{C_v} (1+D_v x^{\frac{5}{2}}), \quad C_v \sim 1 \text{ (but some theories predict } C_v \sim 2)$$

It is not possible to uniquely determine the exact (1 - x)-exponent given the present data – A. Courtoy, P. Nadolsky

Main idea: New parameterization methods for mesons PDF fits

The new modular xFitter 2.2 version was a HUGE help for this project

Fantômas4QCD: advanced polynomial parametrisations

L. Kotz, M. Chavez, A. Courtoy, P. Nadolsky, F. Olness, V. Purohit, 2023

Parametrize PDFs using **Bézier curves** $B^{(n)}(x;a) = \sum_{k=0}^{n} a_{k+2} \binom{n}{k} x^k (1-x)^{n-k}$ **A metamorph** $f(x) \equiv a_0 x^{a_1} (1-x)^{a_2} B^{(n)}(x^{a_x};a)$

- Metamorphs can mimic a variety of behaviors of PDFs and their uncertainties. A versatile alternative to neural networks!
- The shape of a metamorph is computed from function values at user-specified control points
- The carrier component controls asymptotic limits at $x \to 0$ and $x \to 1$
- L. Kotz's talk for more details (WG1)

xFitter usage in the HEP comunity

- xFitter is the tool of choice for PDF/QCD analyses by the LHC Collaborations
- > ATLAS:
 - \triangleright PDF fit from diverse ATLAS data at \sqrt{s} = 7, 8 and 13 TeV EPJC 82 (2022) 5 438
- Drell-Yan phenomenology:
 - ➤ PDF impact of A_{FR} in NC Drell-Yan events JHEP 10 (2019) 176
 - ➤ PDF sensitivity of the longitudinal Z-boson polarisation Phys.Lett.B 821 (2021) 136613
 - ▶ PDF sensitivity to A_{FB} and A_W in Drell-Yan for Precision EW Measurements and New Physics Searches Nucl. Phys. B 968 (2021) 115444
 - Enhancing the LHC sensitivity to broad W'/Z' resonances of new gauge sectors -JHEP 02 (2022) 179, 2211.06188
- Important contribution in several ongoing activities of the LHC EW WG:
 - Correlations between different PDFs trough pseudo-data fits
 - \succ ATLAS/CMS/LHCb $\sin^2 heta^l_{eff}$ pseudo data and combination exercise
 - \succ Tevatron/ATLAS (and in future LHCb and CMS) m_W combination
- $\sim \alpha_S$ extraction from Z boson transverse momentum distribution $\frac{2203.05394}{ATLAS-CONF-2023-015}$

xFitter and EIC

- Exploring QCD in extreme limits
- SURGE collaboration

- Current PDF analyses use "standard" DGLAP
- Extend analyses into extreme limits of QCD
- Include additional effects into PDF fits
- This can all be done with xFitter!
 Thanks to its modular framework

To unequivocally:

- establish saturation
- perform comprehensive global analysis minimizing uncertainties
- extracting universal building blocks of high energy factorization

xFitter and EIC

Gluon PDF:

- Differences: DGLAP, BFKL, saturation
- > Diferent {x, Q², A} dependence
- Large uncertainties: EIC can improve

Longitudinal Structure Function F_L:

- Current theory is challenged
- Gluon strongly influences F_L
- Older xFitter-based analyses: small-x resummation, dipole and tensor pomeron models
- Large uncertainties: EIC can improve

Conclusion & outlook

- The xFitter project (former HERAFitter) is a unique open-source QCD fit framework
- ➤ With its flexibility and modular structure, easy to use Future Freeze 2.2.0 out!
- ➤ Improved user interface for more flexible PDF parametrisation and adding new processes, QCD + EW fits, (SM)EFT interpretation, etc.
- Interfaced with APFEL/APFEL++ \rightarrow TMD phenomenology and FO predictions matched to small- q_T resummed calculations (SIDIS)
- ➤ NNLO grids can be used in xFitter → consistent set of predictions APPLfast
- Foreseen future physics (low-x phenomenology, nuclear PDF, FFs, etc.)
- Fits of PDFs with resummation scale variations 2202.03380
- Heavy flavour and quarkonia production (<u>HEFTY Collaboration</u>)
- Nice <u>summary</u> of xFitter capabilities submitted to Snowmass

Backup Slides

Results obtained with xFitter

DIS inclusive processes (ep)

Jet production $(ep, pp, p\overline{p})$

<u>Drell-Yan processes</u> $(pp, p\overline{p})$

DY data sensitivity to photon PDF

- Theoretical predictions entirely consistent with the experimental data partly due to larger uncertainties (BELLE13)
- Fits yield a good description of the data with the exception of the low-z region (BELLE20 and BaBar)
- **BELLE and BaBar** data sets appear to pull the fit in **opposite directions** χ^2 (Fit B) for BELLE20 is 82/32 vs χ^2 (Fit C) for BELLE20 is 32/32
- The effect of excluding low-z data is dramatic χ^2 /dof ~ 1.2 (similar cuts applied in JAM19)

Charged Pion PDF

Pion structure is poorly studied experimentally

PRD 102 (2020) 014040

- Currently available pion PDF sets in LHAPDF6 are provided without error bands

ightharpoonup Charge symmetry $d=\bar{u}$ and SU(3)-symmetric sea $u=\bar{d}=s=\bar{s}$ at the initial scale $Q_0^2 = 1.9 \text{ GeV}^2$

$$egin{align} v := (d - ar{d}) - (u - ar{u}), & xv(x) = A_v x^{B_v} (1 - x)^{C_v} (1 + D_v x^{\frac{5}{2}}), \ S := 2u + 2ar{d} + s + ar{s} = 6u, & xs(x) = A_S x^{B_S} (1 - x)^{C_S}, \ g := g, & xg(x) = A_g x^{B_g} (1 - x)^{C_g}. \ \end{cases}$$

 \triangleright The A_v and A_q parameters are determined by the sum rules:

$$\int_0^1 v(x) dx = 2, \qquad \int_0^1 x(v(x) + S(x) + g(x)) dx = 1$$

Charged Pion PDF

- \triangleright PDFs with full uncertainties (e.g. α_S , Q_0^2 , μ_R variations)
- \triangleright Parametrisation uncertainties considered as well (e.g. fixing C_g or C_s)
- $\triangleright \mu_R$ variation has the strongest impact
- Valence distribution is well-constrained
- > Hard to determine sea and gluon distributions

Experiment	$\chi^2/N_{ m points}$
E615	194/140
NA10 (194 GeV)	98/67
$NA10 \ (286 \ {\rm GeV})$	92/73
WA70	74/99

Charged Pion PDF

- > Comparison with recent pion PDF determinations:
 - > JAM collaboration
 - ➤ GRVPI1 pion PDF set
- Valence distribution in good agreement with JAM and both disagree with the early GRV analysis
- > The relatively hard-to-determine sea and gluon distributions are different in all the three PDF sets

xFitter usage in the HEP comunity

> CMS:

- \triangleright Multi-differential $t\bar{t}$ cross sections at 13 TeV EPJC 80 (2020) 7 658
- \triangleright Extraction of PDFs, α_S and contact-interactions from new inclusive jet cross section measurement at 13 TeV <u>JHEP 02 (2022) 142</u> (more in this <u>talk</u>)
- W+charm analysis at 8 TeV 2112.00895
- Strange quark PDF analysis with DIS HERA2 data, ATLAS W,Z cross-sections and ATLAS, CMS W+charm cross-sections - PRD 104 (2021) 7 076004
- NLO analysis of heavy-quark production cross-sections using different mass renormalisation schemes - <u>JHEP 04 (2021) 043</u>
- ➤ **TMD parton densities** and corresponding parton showers: the advantage of four- and five-flavour schemes 2106.09791
- Implementation of target mass corrections and higher-twist effects in the xFitter framework - PRD 101 (2020) 7 074015
- NNLO PDFs with EW boson data from the LHC (nuclear PDFs) 2112.11904

Small-x resummation and EIC data

- Study with the pseudo-data properly generated with the low-x resummation
- Small-x resummation corrections available through HELLx+APFEL (starting from $Q^2 = 2.5 \text{ GeV}^2$)

- When including NLLx corrections, uncertainties mildly affected just the gluon at low-x
- Adding NLLx resummation doe not impact valence distributions neither in shape nor in the size of the PDF uncertainties

New determination of $\alpha_S(m_Z)$

- \triangleright ATLAS measurement of $\alpha_S(m_Z)$ from **Z** p_T distribution full lepton phase space
- Exquisite per-mille level precision in the central region enables precise and unambiguous PDF interpretation

ATLAS-CONF-2023-015

- \succ Most precise experimental determination of $\alpha_S(m_Z)$
- Measurement dominated by theory uncertainties, but most of them can be constrained with more precise cross-section measurements

