The EMC effect in QCD

Simonetta Liuti

CENTER for NUCLEAR FEMTOGRAPHY

EMC Effect

The impact of nucleon nucleon correlations

binding, no correlations

NN correlations

C. Ciofi degli Atti, S. Liuti Phys. Rev. C 41 (1990) 1100

Binding alone cannot explain all of the effect

C. Ciofi degli Atti, S. Liuti *Phys.Rev.C* 44 (1991) R1269 C. Ciofi degli Atti, SL, PLB (1989)

Role of "relativistic effects" (proper LC treatment)

F. Gross, S. Liuti, PRC45 (1992)

3/28/23

Scroll on to the new century...

Nucleon medium modifications and off-shell effects result from the combination of x-rescaling (binding) and the transverse motion of quarks

QCD correlation functions and gauge links give us the key to interpret the EMC effect

✓ Calculation including SRC (AV8) with unmodified nucleons

➔ Main constraint provided by Koltun sum rule

GPDs in nuclei

New observables: Deeply Virtual Compton Scattering (DVCS) and GPDs

With off-shell effects

No off-shell effects

SL, SK Taneja, PRC72(2005)

... is this trend observable...??

Measurable effect: from BSA to Compton Form Factors

e ⁴He → e' (⁴He)' γ

CLAS Collaboration, R. Dupré et al, Phys.Rev.C 104 (2021)

How does binding give an effect?

How does binding give an effect?

 X_N

Ζ

 p_1

 $p_{\rm X}$

 P_{A-1}

(d)

 P_A

$$X = k^{+}/(P_{A}^{+}/A)$$
$$Z = P^{+}/(P_{A}^{+}/A)$$
$$X_{N} = X/Z \equiv k^{+}/P^{+}$$

$$H_A(X,\Delta) = \int_X^A dZ \,\rho_A(Z,\Delta) H_N(X/Z,\Delta)$$

Going from LightCone to "0" and "3" coordinates:

$$\rho_A(Z,\Delta) = 2\pi M \int dE \int_{P_{min}(Zeta,E)} dP P \Phi(P) \Phi^*(|\mathbf{P} + \mathbf{\Delta}|)$$

X-Rescaling

What are off-shell effects?

Free nucleon

Bound nucleon

$$\begin{split} (kp) &= k^- p^+ + k^+ p^- = k^- p^+ + \frac{x M^2}{2} \\ k^2 &= 2x (kp) - x^2 M^2 - k_T^2 \\ p^2 &= M^2 \end{split}$$

$$\begin{aligned} (kp) &= k^{-}p^{+} + \frac{x}{2} \left[M_{A}^{2} - \frac{A}{A-z} \left(M_{A-1}^{2} + \mathbf{p}_{T}^{2} \right) \right] - \mathbf{k}_{T} \cdot \mathbf{p}_{T} \\ \hline k^{2} &= 2 \left(\frac{x}{z} \right) (kp) - \left(\frac{x}{z} \right)^{2} p^{2} - \left(\mathbf{k}_{T} - \frac{x}{z} \mathbf{p}_{T} \right)^{2} \\ \hline p^{2} &= \frac{z}{A} M_{A}^{2} - \frac{z}{A-z} \left(M_{A-1}^{*} \right)^{2} - \frac{A}{A-z} \mathbf{p}_{T}^{2} \end{aligned}$$

Nucleon is on its mass shell, quark off-mass-shell

Both nucleon and quark are off-mass-shell

QCD correlation functions

free nucleon

$$\int d^2k_T \,\Phi_{\Lambda}^{[\gamma^+]} = \int dz^- d^2 \mathbf{z}_T \,e^{ik^+z^-} \delta^2(\mathbf{z}_T) \,\langle p \mid \bar{\psi}(0,0,0) \,\mathcal{U}(0,z^-,\mathbf{z}_T) \,\gamma^+ \psi(0,z^-,\mathbf{z}_T) \mid p \rangle_{z^+=0}$$

off-shell nucleon

$$\int d^{2}k_{T} \Phi_{\Lambda}^{\gamma^{+}(OFF)}(x',\mathbf{k}_{T}') = 2\pi \int_{\bar{k}_{T}(A)}^{\infty} dk_{T} \Phi_{\Lambda}^{\gamma^{+}(OFF)}(x',\mathbf{k}_{T}')$$

$$= 2\pi \int dz^{-} d^{2}\mathbf{z}_{T} e^{i(x'p^{+}z^{-}-\mathbf{p}_{T}\cdot\mathbf{z}_{T})} \int_{\bar{k}_{T}(A)}^{\infty} dk_{T} e^{-i\mathbf{k}_{T}\cdot\mathbf{z}_{T}} \langle p \mid \bar{\psi}(0,0,0) \mathcal{U}(0,z^{-},\mathbf{z}_{T}) \gamma^{+} \psi(0,z^{-},\mathbf{z}_{T}) \mid p \rangle_{z^{+}=0}$$

$$\int d^{2}k_{T} \Phi_{\Lambda}^{\gamma^{+}(OFF)}(x',\mathbf{k}_{T}') = 2\pi \int dz^{-}d^{2}\mathbf{z}_{T} e^{i(x'p^{+}z^{-}-\mathbf{p}_{T}\cdot\mathbf{z}_{T})} \langle p \mid \bar{\psi}(0,0,0)\mathcal{U}(0,z)\gamma^{+}\psi(0,z^{-},\mathbf{z}_{T}) \mid p \rangle$$

$$\times \left[\int_{0}^{2\pi} d\phi \int_{0}^{\infty} dk_{T} \ k_{T} \ e^{-i\mathbf{k}_{T}\cdot\mathbf{z}_{T}} - \int_{0}^{2\pi} d\phi \int_{0}^{\bar{k}_{T}^{A}} dk_{T} \ k_{T} \ e^{-i\mathbf{k}_{T}\cdot\mathbf{z}_{T}} \right]_{z^{+}=0}$$
The expression in square bracket can be evaluated as,
$$[\dots]_{z^{+}=0} = \delta^{2}(\mathbf{z}_{T}) - 2\pi \int_{0}^{\bar{k}_{T}^{A}} dk_{T} \ k_{T} \ J_{0}(k_{T}z_{T}) = \delta^{2}(\mathbf{z}_{T}) - 2\pi (\bar{k}_{T}^{A})^{2} \frac{J_{1}(\bar{k}_{T}^{A}z_{T})}{\bar{k}_{T}^{A}z_{T}}$$
ON-SHELL PART

Interpretation

$$\delta^2(\mathbf{z}_T) - 2\pi (\bar{k}_T^A)^2 \frac{J_1(\bar{k}_T^A z_T)}{\bar{k}_T^A z_T}$$

 $\delta^2(\mathbf{z}_T)$ The struck quark propagates instantaneously in the transverse direction: no Final State Interactions are allowed

A-dependent Final State Interactions are induced between the struck quark and the nucleus remnant

Off-shell effects result from FSI rather than from a nucleon size change

Conclusions and Outlook

✓ A QCD-based interpretation of off-shell effects in DIS from nuclei was presented

✓ The next step: Ca \overline{k}_{T} (A) be determined from experiment?

 ✓ Role of SRC correlations and diquark configurations (work in progress with Jennifer Rittenhouse)