
DIS2023: XXX International Workshop on Deep-Inelastic
Scattering and Related Subjects on 28 March 2023

NEMER CHIEDDE
ON BEHALF OF THE ATLAS LIQUID ARGON CALORIMETER GROUP

MACHINE LEARNING ON FPGAS FOR REAL-TIME
PROCESSING FOR THE ATLAS LIQUID ARGON CALORIMETER

2

CONTENT

● Energy reconstruction and challenges

● Network architectures and performance

● LAr Signal Processor board

● Firmware implementation

● High Level Synthesis for Machine Learning with Recurrent Neural Networks and
optimizations

● Future perspectives

3

ENERGY RECONSTRUCTION IN THE LAR CALORIMETER

p+

p+

Sampled at 40
MHz

● The ATLAS liquid argon calorimeter (LAr) exploits the ionization signal to measure the energy of electrons and
photons
○ Calorimeter with ∼182,000 cells

● Bipolar pulse shape (total length up to 750 ns, 30 bunch crossings)
○ Sampled and digitized at 40 MHz

● LAr processing uses optimal filtering algorithms to compute the deposited energy
○ Maximum finder used to identify the deposit time (OFMax)
○ Use of five samples around the peak of the pulse

4

ENERGY RECONSTRUCTION UNDER HL-LHC CONDITIONS
● As part of the HL-LHC upgrade:

○ The luminosity will be increased to better understand rare processes
○ More p-p collisions per bunch crossing (pileup): ~200 compared to the current ~40

● Pulses might overlap due to high pileup which distorts the bipolar pulse profile of successive pulses
○ The current model (OFMax) was not developed to work under these conditions

● Phase II electronics will have higher computational capacity
○ Possibility to implement a neural network based algorithm in FPGAs to reconstruct the

energies deposited in the LAr calorimeter

Overlapping events

5

● 1D Convolution Neural Networks (CNN) designed to
process time series regression

● CNN architecture divided into two sub-networks:

○ Identification of the energy above 3𝜎 of the
electronic noise, corresponding to 240 MeV.

○ Reconstruction of the energy deposited in
each cell of the calorimeter.

● 3-Conv has 5 samples in the peak, 23 in the past
with 3 total layers

● 4-Conv has 5 samples in the peak, 8 in the past with
4 total layers

● The maximum finder achieves a maximum signal
efficiency of about 80%, while the tagging CNN
reaches efficiencies well above 90%

CNN ARCHITECTURE AND NETWORK SIZE

6

● Recurrent Neural Networks (RNN) are designed to process time series data
○ RNNs consist of neural network layers that combine new temporal input with previously processed state

● Long short-term memory (LSTM) and Vanilla-RNN are the RNNs selected to verify the feasibility of the hardware
implementation

○ The LSTM cell is the most complex RNN, and, consequently, has the highest accuracy. It needs two
activation functions (hyperbolic tangent and sigmoid). Uses a lot of FPGA resources

○ The Vanilla-RNN or Simple-RNN cell is the most straightforward.It consists of a single activation (ReLU)
and requires less resources than LSTM. Less effective than LSTM, but still acceptable for our purposes

RNN ARCHITECTURE AND NETWORK SIZE

Higher complexity, bigger size on hardware

Better performance, robust against past fluctuations

7

● All neural networks have better energy resolution and mean
closer to zero compared to the actual model (OFMax)

● LSTM network has the best performance among all evaluated
neural networks, however it is too large to fit on an FPGA

● CNNs and Vanilla RNNs have less parameters and perform
adequately

Algorithm LSTM
(single)

LSTM
(sliding)

Vanilla
(sliding)

CNN
(3-conv)

CNN
(4-conv)

Optimal
Filtering

Number of parameters 491 491 89 94 88 5

MAC units 480 2360 368 87 78 5

NN PERFORMANCE AND NETWORK SIZE

8

RNN RESOLUTION AS A FUNCTION OF GAP TO PREVIOUS
ENERGY DEPOSIT IN BCS

● Overlapping pulses decrease the performance of the
energy reconstruction by OFMax

● Performance in the overlap region depends on the
number of samples that are used from past events

● All NNs tested are more efficient with overlapping
pulses
○ Published results (link)

http://cds.cern.ch/record/2775033/files/Aad2021_Article_ArtificialNeuralNetworksOnFPGA.pdf

9

FIRMWARE IMPLEMENTATION: LASP BOARD
● The LAr Signal Processor (LASP) board will

contain two latest generation INTEL Agilex
FPGAs

● 3 front-end boards must be processed per LASP
○ 384 channels
○ The latency must be less than 125 ns.

● Each channel operates at 40 MHz

● All channels must be processed simultaneously
by the NNs

● The tests are performed on a Stratix 10 development kit as the
Agilex development kit is not available yet

● In order to implement in hardware, it is necessary to use specific
tool such as HLS or VHDL

● RNN are developed in HLS and then VHDL, while CNN in VHDL

Replace OFMax by the implementation of neural networks

FIRMWARE IMPLEMENTATION: FPGA

10

● Resolution between software and firmware output is O(1%)

● Necessary to use multiplexing to compute several networks simultaneously

● Using multiplexing, we are able almost meet the requirements for one instance of
the network per fpga
○ Some optimizations still needed

 One instance per FPGA

Language Number of channel ALM [%] DSPs [%] Latency [ns] Max. Frequency [MHz] Multiplexing

3-conv CNN - 0.6 0.8 62 493 -

4-conv CNN - 0.6 0.7 58 480 -

Vanilla RNN - 1.4 0.6 206 641 -

LSTM (sliding) - 7.5 12.8 363 517 -

3-conv CNN 516 2.3 0.8 125 487 12

4-conv CNN 660 1.8 0.7 150 423 12

Vanilla RNN 576 0.6 2.6 120 640 15

● Maximum clock frequency and
channels:
○ Vanilla RNN: 512 channels and

600 MHz for 15x multiplexing

○ CNN: 384 channels and 480
MHz for 12x multiplexing

● These implementations are expected
to reach even less resource usage,
shorter latency, and higher clocking
frequency

M
ul

tip
le

xe
d

N
ot

 M
ul

tip
le

xe
d

11

● To optimize the arithmetic operations, a mix of
quantization procedures are used for different
data categories:
○ Internal, Input/Output and Weights

● Rounding (RND) of the weights does not require
any additional resources in the FPGA
○ Rounded weights can be loaded into the

FPGA

● Truncation of I/O, internal and weights types
leads to a significant loss in resolution
○ RND_IWD (0.07%)
○ RND_WD (0.09%)
○ RND_W (0.12%)
○ Truncation (TRN) (0.2%)

OPTIMIZATION OF ARITHMETIC OPERATIONS

● HLS does not achieve the target frequency and resource utilization when several instances of the NN are
implemented in one FPGA
○ Increased Adaptive Logic Module (ALM) resources and reduced the maximum frequency (FMax) when we

increase the number of network instances

● Force the placement of RNN components
○ Allow better handling of timing violations and improve FMax
○ Defining a placement area in HLS is very complex
○ Change to VHDL for final setup

● Use incremental compilation
Keep the network instances that do not present timing violations and recompile
only the rest

12

VHDL IMPLEMENTATION OF THE VANILLA RNN

HLS placement
VHDL placement

FPGA FIRMWARE SIMULATION RESULTS WITH VANILLA-RNN
● VHDL is needed to refine the design and meet the requirements of LAr

● The produced Vanilla-RNN firmware fits the resource limitations estimated by the LAr
collaboration
○ Hard to meet strict specifications with HLS

● Incremental compilation with forced placement helps to avoid timing issues, increase the
frequency

13

Stratix10
1SG280HU2F50E2VG Language Number of channel *ALM [%] ** DSPs [%] Latency [ns]

Max. Frequency
[MHz]

Multiplexing

RESULTS HLS optimized 370 23% 100% 302 414 10

VHDL optimized 392 18% 66% 121 561 14

SPECIFICATION - 384 max 30% max 70% max 125

* Adaptive Logic Module (ALM)
** Digital Signal Processing (DSP)

14

HLS4ML: HIGH LEVEL SYNTHESIS FOR MACHINE LEARNING

● HLS4ML is an open source software designed to facilitate the
implementation of AI algorithms on FPGAs

● Automatically performs the task of translating a trained NN,
specified by the model architecture, weights and bias, into
firmware for a specific hardware

● Includes implementation of common elements (layers,
activation functions, binary NN, ...)

● RNNs in quartus HLS are now implemented in HLS4ML
○ Supports many of the optimizations that were done for

the RNNs

● RNN for Quartus github (link)

HLS4ML can be used to easily adapt NNs and optimize parameters for
implementation on FPGAs

https://github.com/fastmachinelearning/hls4ml/pull/575

15

HLS4ML ADAPTABILITY

● RNNs in quartus HLS are now implemented and validated in HLS4ML
○ Supports many of the optimizations that were done for the RNNs

● Provides a number of configurable parameters which can help the user
explore and customize, for example:
○ FPGA type
○ Look-up table (LUT) size
○ Clock period
○ Backend (Vivado, Vivado Accelerator and Quartus)

● Used to optimize the parameters for implementation on FPGAs
○ Bit width can be optimized per data type selected
○ Different activation functions can be applied per layer
○ LUT precision can be fixed independently
○ Utilise symmetry properties for softsign, sigmoid, and tanh to give

higher precision for the same resource usage

total number of bits

Bit width

16

GENERAL STATUS AND PERSPECTIVES
● RNNs and CNNs outperform the optimal filtering algorithm for energy reconstruction in the ATLAS LAr

calorimeter
○ Especially in the overlapping region between multiple pulses

● All networks are designed to minimize resource usage while maintaining performance

● Vanilla-RNN is a strong candidate that can satisfy the strict requirements of the LASP firmware

● HLS is a powerful tool for fast prototyping while implementation in VHDL is needed to refine the firmware in case
of stringent requirements

● HLS4ML can be used to easily adapt the NN and optimize the parameters for implementation on FPGAs
○ LSTM and RNN are implemented in HLS4ML for quartus

● Hardware tests (INTEL DevKits) have started and show good results

● Paper published/submitted:
○ Artificial Neural Networks on FPGAs for Real‑Time Energy Reconstruction of the ATLAS LAr Calorimeters

(link)
○ Firmware implementation of a recurrent neural network for the computation of the energy deposited in the

liquid argon calorimeter of the ATLAS experiment (link)

https://link.springer.com/article/10.1007/s41781-021-00066-y
https://arxiv.org/abs/2302.07555

17

BACKUP

18

● The fixed point representation can directly affects the resource usage in
the FPGA.

● Dedicated component (Digital Signal Processing) inside the FPGA perform
the scalar multiplications

● The DSP can work in 3 differents mode for Stratix 10 and Agilex:
○ One block DSP for 32×32 bits multiplication in the floating-point

representation

○ One block DSP for 27×27 bits multiplication in the fixed-point
representation

○ One block DSP do two simultaneous 19×18 bits multiplications in
the fixed-point representation

● The third mode allows doubling the available dedicated multiplication
resources on the FPGA

○ Using 16 bits for weights and 19 bits for the rest optimizes FPGA
DSP resources while maintaining firmware calculation resolution
(<0.1%)

DSP MODES AND MULTIPLICATION RESOURCE IMPACT

19

● DSP can sum the result of two multiplications internally and has a component
with an external input adder

The first DSP's output can be used in the second DSP's additional adder to sum
their outputs

○ Needs to synchronize the DSPs
○ Extra registers are required to delay the results

● The chained mode is advantageous below 450 MHz

○ MLAB frequency is limited to 450 MHz in read-write mode required for
register (FIFO) implementation.

MATRIX MULTIPLICATION WITH AND WITHOUT CHAINED DSPS

ARITHMETIC OPERATIONS
EFFECTS

20

● Two types of quantization are implemented in the Intel
HLS compilation:

○ Truncation (TRN)
○ Rounding (RND)

● TRN quantization modes have the worst effect on the
calculated transverse energy

● RND mode gives a good compromise among resource
usage, latency, and resolution.

