

PID with ePIC at the EIC

Roberto Preghenella Istituto Nazionale di Fisica Nucleare, Sezione di Bologna

on behalf of the ePIC Collaboration

DIS2023

XXX International Workshop on Deep-Inelastic Scattering and Related Subjects March 27–31 2023, East Lansing, Michigan, USA

p/A

Particle identification at EIC

high-O2 one of the major challenges for the detector medium-x $\eta = 0$ $\theta = 90^{\circ}$ $\eta = -0.88$ $\theta = 135^{\circ}$ $\eta = 0.88$ $\theta = 45^{\circ}$ $\eta = -4$ Central $\eta = 4$ $\theta = 2^{\circ}$ Endcan $\theta = 178^{\circ}$ Detector h-endcap 10x100 GeV π $Q^2 > 1 GeV^2$ barrel p (GeV/c) e-endcap -6 -2 0 2

physics requirements

- pion, kaon and proton ID 0
- over a wide range $|\eta| \le 3.5$ Ο
- with better than 3σ separation Ο
- significant pion/electron suppression Ο

momentum-rapidity coverage

- forward: up to 50 GeV/c 0
- central: up to 6 GeV/c Ο
- backward: up to 10 GeV/c Ο

demands different technologies

2

6

rapidity

10³

10²

10

Particle identification techniques

EIC detector need more than one technique to cover the entire momentum ranges

- central (< 6 GeV/c)
 - TPC, TOF, DIRC
- backward (< 10 GeV/c)
 - aerogel RICH
- forward (< 50 GeV/c)
 - gaseous RICH

The ePIC barrel detector

• tracking

ve 09:00

- new 1.7 T magnet
- Si-MAPS + MPGDs

• calorimetry

- e-side: PbWO₄ EMCal
- barrel: SciGlass / imaging
- h-side: finely segmented
- outer barrel HCal

• particle ID

- AC-LGAD TOF
- mRICH / pfRICH
- hpDIRC
- o dRICH

The ePIC barrel detector

• tracking

. ve 09:01

- new 1.7 T magnet
- Si-MAPS + MPGDs

• calorimetry

- e-side: PbWO₄ EMCal
- barrel: SciGlass / imaging
- h-side: finely segmented
- outer barrel HCal

• particle ID

- AC-LGAD TOF
- mRICH / pfRICH
- hpDIRC
- dRICH

TOF – Time of Flight

based on AC-LGAD technology, also used in far forward ePIC instrumentation

• two AC-LGAD layers

- barrel, $|\eta| < 1.4$
- \circ forward, 1.5 < η < 3.5

• barrel

- \circ 500 μm x 1 cm strips
- 1% X₀

• forward

- \circ ~ 500 μm x 500 μm pixels
- 8% X₀

• performance

- \circ space resolution: 30 μ m
- \circ time resolution: $\sigma \sim 25 \text{ ps}$

TOF performance simulation

detector geometry implemented in Geant, digitisation and integration in tracking software

barrel layer

- e/pi up to 0.5 GeV/c
 pi/K up to 1.9 GeV/c
 pi/K up to 1.9 GeV/c
 k/p up to 2.7 GeV/c
 K/p up to 4.6 GeV/c

forward layer

hpDIRC – high-performance DIRC

fast focusing DIRC with high-resolution 3D (x,y,t) reconstruction

crucial components

- innovative <u>3-layer spherical lenses</u>
- compact fused silica <u>expansion volumes</u>
- fast photodetection, small pixel MCP-PMT

• hpDIRC creates focused images

significantly improved resolution

Backward RICH selection

two candidate technologies for PID in the electron-side direction

mRICH – modular RICH

a compact, projective and modular RICH detector

• key components of a module

- \circ 3-cm aerogel radiator (n = 1.03)
- 6" acrylic Fresnel lens
- mirror wall set
- photosensor surface

• smaller and sharper rings

wrt proximity focusing

• better resolution, less sensor area

mRICH performance simulation

full Geant4 simulation and reconstruction (single particle events)

momentum (GeV/c) 14

pfRICH – proximity focusing RICH *

ePI

a classical proximity focusing RICH with timing capability for MIPs

Cherenkov radiator

- 2.5 cm thick aerogel (n = 1.04-1.05)
- with 300 nm acrylic filter
- \circ $\langle N_{pe} \rangle \sim 11-12$

• proximity gap

- 45 cm long
- nitrogen filled

HRPPD photosensors

- 120 x 120 mm tiles
- pixelation: 32 x 32 pads
- DC-coupled

• timing capability

- MIP produces UV light (dozens of pe) in the HRPPD window
- provide time with σ < 20 ps

pfRICH performance simulation

complete Geant4 simulation, event-level digitisation and reconstruction

- reconstruction algorithm capable of handling complex categories
- angles in agreement with expectations

• up to ~ 9.0 GeV/c

 $3\sigma \pi/K$ separation

dRICH – dual-radiator RICH

compact and cost-effective solution for broad momentum coverage at forward rapidity

- radiators: aerogel (n ~ 1.02) and C₂F₆ (n ~ 1.0008)
- **mirrors:** large outward-reflecting, 6 open sectors
- **Sensors:** 3x3 mm² pixel, 0.5 m² / sector
 - single-photon detection inside high B field (~ 1 T)
 - outside of acceptance, reduced constraints
 - best candidate for SiPM option

ePi

dRICH beam tests

CERN SPS

detector prototype to study dual radiator performance and interplay

dRICH beam tests

successful operation of SiPM with complete readout chain dRICH prototipe on PS beamline with SiPM-ALCOR box time coincidences hDelta 1 beamline shared with LAPPD test SiPM sensors were **irradiated** (up to 10¹⁰) 300E

200F

00 -80 -60 -40 -20

0

20 40 60 80 100 hit - reference time (ns)

and **annealed** (150 hours at T = 150 C)

Photosensors – HRPPD

smaller version of LAPPD MCP-PMT technology, being developed with Incom Inc.

DC-coupled HRPPD

- choice for backward RICH detector
 - for both mRICH and pfRICH layout
- \circ 108 x 108 mm² active area (120 x 120 mm² total)
- high intrinsic time resolution
- \circ low DCR (compared to SiPM) ~ 1 kHz/cm²
- IOW COSt (compared to other MCP-PMT)
 - possible application for DIRC

ongoing R&D

- optimisation of QE and pixelation
- characterisation in B field
 - gain and time resolution
- mechanical / electrical interface
 - with direct pixel readout

Photosensors – SiPM

magnetic-field insensitive and cheap solution for the dRICH

pros

- cheap 0
- high photon efficiency Ο
- excellent time resolution \bigcirc
- insensitive to B field \bigcirc

cons

- large DCR, ~ 50 kHz/mm² @ T = 24 °C 0
- not radiation tolerant \bigcirc
 - moderate fluence < $10^{11} n_{eq}/cm^2$

R&D on mitigation strategies

- reduce DCR at low temperature Ο
 - operation at T = -30 °C (or lower)
- recover radiation damage Ο
 - in-situ high-temperature annealing
- exploit timing capabilities Ο
 - with ALCOR (INFN) front-end chip

ePIC meets EIC PID needs with advanced detector technology

• PID is one of the major challenges for the ePIC detector at the EIC

- \circ physics requires high-purity π K p over large phase-space
- multiple techniques needed
 - time-of-flight, ring imaging Cherenkov
 - calorimetry for $e(\mu)$ identification

• selected detector technologies meet the requirements

- AC-LGAD TOF
- high-performance DIRC
- dual-radiator RICH
- currently reviewing technologies for the backward RICH (mRICH / pfRICH)

• ongoing R&D activities

- risk reduction
- optimisation of technologies

END

Detector requirements for PID

definition of requirements in the Yellow Report

generic all-purpose detector and performance matrix SCIENCE REQUIREMENT AND DETECTO CONCEPTS FOR THE ELECTRON-ION COLLIDER summarises the detector requirements for the diverse physics program at EIC 0 **EIC Yellow Repo** focus on the PID-relevant subset of the detector matrix 0 θ **Electrons and Photons** $\pi/K/p$ Nomenclature min E p-Range Resolution $\sigma_{\rm F}/E$ Separation photon (GeV/c) mrad) Hadron Calorimeter Endcap -4.0 to -3.5 not accessible -3.5 to -3.0 Electromagnetic Calorimeter 1%/E⊕2.5%/√E⊕1% -3.0 to -2.5 20 Me\ (for 40 cm space) n up to -2.5 to -2.0 -2.0 to -1.5 Cherenkov Counter ≤ 10 GeV/c Barrel EM Calorimeter suppressio 50 Me\ 50 cm space n up to -1.5 to -1.0 DIRC *Better resolution requires 1:(1E-3 -65 cm space allocated 1E-2) Solenoidal Magnet Backward -1.0 to -0.5 **RICH** Detector -0.5 to 0.0 Central Barrel Hadron Calorimeter $\geq 3\sigma$ 0.0 to 0.5 Detector Barrel Transition Radiation Detector 0.5 to 1.0 Preshower Calorimeter Electromagnetic Calorimeter 1.0 to 1.5 Hadron Calorimeter Endcap 1.5 to 2.0 2.0 to 2.5 lpper limit achievable with $3\sigma e/\pi up$ (worse 50 Me\ 2.5 to 3.0 approaching **Better resolution requires** GeV/c -65 cm space allocated

3.0 to 3.5

arXiv:2103.05419 [physics.ins-det]

26

ePI

Generic R&D projects since 2014

Project	Торіс	eRD18	Precision Central Silicon Tracking & Vertexing
eRD1	EIC Calorimeter Development	eRD19	Detailed Simulations of Machine Background Sources and the Impact to Detector Operations
eRD2	A Compact Magnetic Field Cloaking Device	eRD20	Developing Simulation and Analysis Tools for the EIC
eRD3	Design and assembly of fast and lightweight forward tracking prototype systems	eRD21	EIC Background Studies and the Impact on the IR and Detector design
eRD6	Tracking and PID detector R&D towards an EIC detector	eRD22	GEM based Transition Radiation Tracker R&D
eRD10	(Sub) 10 Picosecond Timing Detectors at the EIC	eRD23	Streaming Readout for EIC Detectors
eRD11	RICH detector for the EIC'S forward region particle identification - Simulations	eRD24	Silicon Detectors with high Position and Timing Resolution as Roman Pots at EIC
eRD12	Polarimeter, Luminosity Monitor and Low Q2-Tagger for Electron Beam	eRD25	Si-Tracking
eRD14	An integrated program for particle identification (PID)	eRD26	Pulsed Laser System for Compton Polarimetry
eRD15	R&D for a Compton Electron Detector	eRD27	High Resolution ZDC
eRD16	Forward/Backward Tracking at EIC using MAPS Detectors	eRD28	Superconducting Nanowire Detectors
eRD17	BeAGLE: A Tool to Refine Detector Requirements for eA Collisions in the Nuclear Shadowing/Saturation Regime	eRD29	Precision Timing Silicon Detectors for for combined PID and Tracking System

PID

Project R&D

Generic R&D program ended in September 2021 focus on projects targeted for the EIC detector

Project driven R&D scope

- reflects reference detector as defined in CD-1
- encapsulate Project and detector systems
- o reduce risk, ensure feasibility, optimisation

Project	Торіс
eRD101	Modular RICH / aerogel RICH
eRD102	Dual-radiator RICH
eRD103	High-performance DIRC
eRD104	Silicon service reduction
eRD105	SciGlass
eRD106	Forward EMCAL
eRD107	Forward HCAL
eRD108	Cylindrical / planar MPGD
eRD109	ASICs / electronics
eRD110	Photosensors
eRD111	Silicon tracked (excluding electronics)
eRD112	AC-LGAD (including ASIC)

PID in detector proposals

• backward

proximity-focus RICH

central

high-performance DIRC <mark>AC-LGAD TOF</mark>

 forward dual-radiator RICH

- backward AC-LGAD TOF
- central high-performance DIRC
- forward dual-radiator RICH

• backward

modular RICH AC-LGAD TOF

• central

high-performance DIRC AC-LGAD TOF

 forward dual-radiator RICH AC-LGAD TOF

mRICH beam tests

verified working principle and validated simulation

JLab Hall D

mRICH electron-ID

ePi

Murad Sarsour

pfRICH acceptance optimisation

use side wall mirrors to increase pseudorapidity acceptance

without wall mirrors

with wall mirrors

33

dRICH performance simulation

inverse ray-tracing reconstruction algorithm shared with pfRICH

EMCal e/π separation power

excellent, up to 10⁴ pion suppression

barrel SciGlass

Muon identification

muon ID using a combination of EM and Hadron calorimetry

Total hadron interaction length: 6-7 λ_0 for central and 7-8 λ_0 for forward Pion punch through probability: 10⁻² to 10⁻³ level

- Utilizing central track, barrel EMCal, EMCal active support and barrel HCal
- Pion rejection starting at 10⁻¹ at low p and saturate above 100:1 above a few GeV/c

