LDMX: The Light Dark Matter experiment

March 28, 2023Matt Solt, University of Virginia

The Existence of Dark Matter

- There is clear evidence for the **existence of dark matter** (DM)
- The fundamental nature/origin of DM is a **central puzzle in particle physics**
- SM can't account for DM. What are some ideas for what DM could be?

Galactic Rotation Curves

Gravitational Lensing

Cosmic Microwave Background

Matt Solt

A Thermal Relic - Dark Matter

- Astrophysical evidence of DM does not constrain the mass scale very well
- A thermal relic simple and predictive model of dark matter (DM)
- Thermal DM constrains DM mass to ~mass scale of SM particles and relates the annihilation cross-section to the observed relic abundance (~85%)

The range of (non-)thermal DM mass spans a range of \sim (90) 7 orders of magnitude!

A Thermal Relic - WIMPs and LDM

- WIMPs are popular, but accessible parameter space is running out of room
- Increasing interest in expanding the thermal DM search to "Light" DM (LDM) in the MeV-GeV mass range
- LDM requires non-SM "portal" interaction due to the Lee-Weinberg Bound

Light Dark Matter

- Simplest prediction includes a dark photon (heavy photon or A') that undergoes kinetic mixing with the SM photon
- Thermal prediction targets make **attainable predictions with accelerators**

Kinetic Mixing $\epsilon F^{\mu\nu}F'_{\mu\nu}$

Dark Photon with a Fixed Target

- Fixed Target Signal Characteristics:
 - Dark bremsstrahlung A' production, invisible decay
 - A's take most of the beam energy; only visible final state particle is a soft recoil electron

- Can probe this mechanism through a missing momentum search. We need...
 - High momentum resolution
 - High veto efficiency of SM backgrounds

LDMX Concept

- ullet Missing momentum and energy approach $\,e^-_{}$
 - DM production identified by missing energy/momentum in detector
 - Equipped for particle ID e/gamma
 - Recoil pT used as discriminator/identifier

- 4 and 8 GeV e- beam provide by SLAC
 - Parasitically use the LCLS-II beam with a dedicated transfer line (LESA)
 - Individual tagging and reconstruction of up to 1e16 electrons
 - \circ Low current, high repetition rate 37 MHz, $\mu = 1$

7

LDMX Design

- Need hermetic detector designed for high rates and high radiation doses
 - Tagging/recoil tracker: fast with high momentum resolution and large acceptance, based on the Heavy Photon Search design arXiv:2212.10629v2
 - **Electromagnetic calorimeter**: fast, good energy resolution, and high granularity
 - **Hadronic calorimeter**: high veto efficiency of neutral hadrons

Backgrounds

Electromagnetic Calorimeter

- 40 X0 Si-W sampling calorimeter (based on CMS HGCal upgrade)
 - Provides fast missing energy trigger
 - Dense, radiation hard, full shower containment, and high granularity

10

Backgrounds

Sampling Calorimeters

Tracking

Ecal Veto

- More difficult to veto: Rare photon reactions that deposit low energy in the Ecal
 - Exploit longitudinal/transverse shower shapes and train a boosted decision tree (BDT)
 - High granularity Ecal enables MIP tracking

Backgrounds

Tracking

Hadronic Calorimeter

- Sampling calorimeter with segmented plastic/steel
 - Readout by wavelength shifting fibers and SiPMs (based on the Mu2e Cosmic Ray Veto design)
 - Highly efficient veto for PN processes that produce neutral hadrons. Desire 1e-6 rejection
 - Side HCal rejects wide angle bremsstrahlung and y→µ+µ-

Backgrounds

All systems combined: < 1 background event with signal efficiency of ~30-50% for O(1e14) EoT!

iı	ncoming		
	e —	bre	msstrah
		tric	dent
			EN
	Muon cor	oversion	; · · ·
	Target-area	ECal	,

coming		outgoing	
e^-		$\longrightarrow e^-$	
1	brei	$\xrightarrow{msstrahlung} \gamma$	
	tric	$\frac{\text{dent}}{} \longrightarrow +e^+e^-$	
	\	$\gamma \rightarrow \text{hadrons}$	
	1	$\gamma \rightarrow \mu^+ \mu^-$	
	Ņ	$+ \text{hadrons} \rightarrow \gamma \rightarrow 1n/K_L^0 + \text{soft}$ $+ \mu^+ \mu^- \rightarrow \gamma \rightarrow K^{\pm} + \text{soft}$	
Muon conv	ersion	$+\mu^+\mu^ \rightarrow \gamma \rightarrow K^{\pm} + \text{soft}$	
Target-area	ECal	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_	2000	1 1	
8.2×10^{14} 2.	$.4 \times 10^{15}$	K^{\pm} decay	
		$\stackrel{K^{\pm}}{\longrightarrow}$ decay in ECal	
6.27×10^8 8	$.4 \times 10^{15}$	K^{\pm} decay in ECal	
6.27×10^{8} 8 1.6×10^{7} 1	$\frac{.4 \times 10^{15}}{8 \times 10^{10}}$	$\stackrel{K^{\pm}}{\longrightarrow}$ decay in ECal	
6.27×10^{8} 8 1.6×10^{7} 1	0.4×10^{15} 0.4×10^{10} 0.6×10^{8}		
$\begin{array}{c cccc} 6.27 \times 10^8 & 8 \\ 1.6 \times 10^7 & 1 \\ 3.1 \times 10^4 & 1 \end{array}$	$ \frac{.4 \times 10^{15}}{8 \times 10^{10}} $ $6 \times 10^{8} $ $5 \times 10^{8} $	K^{\pm} decay in ECal increasingly rare	

relative

10-3

10-4

10-5

10-6

 10^{-7} 10^{-8}

Photo-nuclear

rate -10^{0} 10-1 10^{-2}

"invisible" backgrounds « 10-16

Recoil e- pT is an additional discriminator on backgrounds

arXiv:1912.05535

Hard Track

Extra Tracks

ECal Energy

ECal Feature

HCal Hits

Veto Handles

Signal Kinematics

- Transverse momentum of recoil election is the last veto handle
- Currently not used in veto efficiency estimates, but as a backup discriminator
- Transverse momentum can also be used to constrain DM mass scale

LDMX Sensitivity

Phase 1: 4 GeV, 10¹⁴ electrons Phase 2: 8 GeV, 10¹⁶ electrons

arXiv:1808.05219

$2m_{DM} < m_{A'}$

Matt Solt 17

LDMX Visible Signatures

- Broad physics potential for LDMX beyond missing momentum search
 - o Displaced visible decays minimal dark photon, ALPs, SIMPs, etc.
 - Electronuclear measurements for neutrino physics arXiv:1912.06140

arXiv:1807.01730

CERN Test Beam

- Recent successful test beam at CERN PS in April 2022 with Hcal and trigger scintillator (TS) prototypes
- Demonstrated successful operations, readout & electronics, and basic physics capabilities of two subsystems

_ Hadronic Calorimeter (HCal) _ Trigger scintillator

First steel absorber layer of the hadronic calorimeter

TS plastic scintillator encased in black tape for light tightness TS readout electronics -

___ Gantry to adjust ___ position of TS in beamspot

Matt Solt

CERN Test Beam - Analysis

Pion Candidate

LDMX 2022 4 GeV Muons After track-like cut on layers 1 & 15 $(MIP_{eq}>0.9)$ Strip 6, Layer 7 0.20 0.15 Hcal response 0.10 from 4 GeV muons 0.05 LDMX 2022 Entries 250 - Data Simulation 200 150 TS response 100 from 4 GeV electrons 50 0.2 0.4 1.2 0.8 Deposited energy per bar [MeV]

20

Matt Solt

Conclusion

- Thermal relic models offer plausible and predictive models of dark matter
- LDMX can conclusively probe many such models in the sub-GeV mass range through a missing momentum search
- LDMX offers a broader physics program for visible searches and neutrino measurements

Thank You!

Carnegie Mellon University

CERN Test Beam - Quad-bar Fabrication

Mu2e Cosmic Ray Veto (CRV) module factory at the **University of Virginia** used for Hcal quad-bar fabrication

CERN Test Beam

Ecal BDT

MIP Tracking

Ecal/Hcal Vetoes

- Ecal BDT > 0.99
- Hcal max PEs is > 5

Matt Solt 26

Electro-nuclear Scattering Measurements

Advantage of DM Production at Accelerators

Non-relativistic vs semi-relativistic DM scattering

A Thermal Relic

- What is a thermal origin of DM?
 - 1. Assume DM was in thermal equilibrium with SM particles
 - 2. The universe expands and cools such that DM pairs are no longer produced
 - 3. The universe expands and cools such that DM annihilations cease
- The present DM density Ω_χ is related to the DM annihilation cross-section $\langle \sigma v \rangle$

$$\Omega_{\chi} \propto \frac{1}{\langle \sigma v \rangle} \longrightarrow \langle \sigma v \rangle = 3 \times 10^{-26}$$

arXiv:9506380

 $\frac{\mathrm{cm}^3}{\mathrm{c}}$

Any proposed mechanism must yield ≤ 85% DM!

29

Tracker and Trigger Scintillator

- Tagging tracker
 - Measures incoming beam electron
- Recoil tracker (based on Heavy Photon Search design) arXiv:2212.10629v2
 - Measures recoil electron and vetoes extra particles
- Trigger Scintillator
 - Arrays of scintillator bars provide fast count of incoming electrons
 - Used an input to the missing energy trigger

30