Advanced Methods for Roman Pots Reconstruction at the EIC

David Ruth, Alex Jentsch, Michael Murray
03/28/2023 - DIS2023

Acknowledgements

- A big thanks to all our collaborators on the EIC generic R\&D Team!
- See Alex Jentsch's talk at the end of the session for more details on the Far-Forward detectors!
- Thank you to Jefferson Lab and JSA for providing travel funds to help me be at this conference

The EIC Physics Program Requires Detection and Reconstruction of Very Far-Forward Protons

- Final State from many possible interactions:
- e+p
- e+d
- $\mathrm{e}+\mathrm{He}_{3}$
- $e+A$
- Roman Pots used to measure protons with momentum between 65% and 100% of the beam momentum
- Momentum is altered by the magnets between the main detector and the Roman Pots
- Necessary to reconstruct the scattered kinematics from the measured kinematics in the detector

Momentum Reconstruction is performed with Transfer Matrices

$$
\left(\begin{array}{c}
x_{i p} \\
\theta_{x, i p} \\
y_{i p} \\
\theta_{y, i p} \\
z_{i p} \\
\Delta p / p
\end{array}\right)=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
d_{0} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} \\
e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & f_{5}
\end{array}\right)\left(\begin{array}{c}
x_{\text {det. }} \\
\theta_{x, \text { det. }} \\
y_{\text {det. }} \\
\theta_{y, \text { det. }} \\
z_{\text {det. }} \\
\Delta p / p
\end{array}\right)
$$

- Map each variable measured at the detector back to the variables at the IP
- Unique for different positions along the beam axis

For Central Momentum Track Protons, Matrix can be generated with BMAD

$\left(\begin{array}{cccccc}1.88 & 28.97 & 0.0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

- For DVCS, this works well, but protons can have large deviations from central orbit momentum
- Need different matrix for other momentum fractions!

Current Solution: Use an input 'tuning card' for each Momentum Fraction

longitudinal momentum fraction

$$
x_{L}=\frac{p_{z, \text { proton }}}{p_{z, \text { beam }}}
$$

Magnets (fields, bores, etc.)

Fit Each Matrix value to interpolate to other Momentum Fractions

$\left(\begin{array}{c}1.88481537 \\ -0.021146 / 3 \\ 0.0000 \\ 0.0000 \\ 0.05735551 \\ 0.0000\end{array}\right.$
28.96766544
0.20555261
0.0000
0.0000
1.01363652
0.0000
0.0000
0.0000
-2.25541901
-0.17782524
0.0000
0.0000
0.0000
0.0000
3.78031509
-0.14532313
0.0000
0.0000

- Plot each of the 36 matrix values as a function of x L
- Fit each of these plots with a quadratic polynomial to interpolate
- Now we just need to extract xL to generate the reconstruction matrix

Lookup x_{L} at $z=28 \mathrm{~m}$ on the beamline with $\left(\theta_{x}, x\right)$ for the Roman Pots

- "Chromaticity Plot" used as a lookup-table to extract x_{L} for a given set of detector x and θ_{x}
- Produced by running the simulation with no reconstruction matrix
- We can then use x_{L} with the fits to generate the matrix entries

Now we can use the coordinates measured at the Roman Pots to reconstruct the scattered momentum vector

Results - Longitudinal Momentum

Results - Transverse Momentum

Current method has a number of drawbacks:

- Final solution dependent on initial choice of test trajectories (or 'tuning cards')
- Current study only goes down to x_{L} of around 0.75 , doesn't capture momenta further from central orbit
- Assumption of linearity necessary for current approach
- Current approach will fail for more complicated interactions where the tagged particle is not coming directly from IP
- Needs to be completely redone for detectors at different points on the beamline
- Study would need to be completely redone in response to updates in the detectors or magnets

Current work: integration with EICRecon

- Static Matrix method recently added to ElCrecon!
- Currently, work is being done on adding the dynamic method into EICrecon
- Investigating ongoing magnetic field transport issue in DD4HEP which greatly affects proton's motion through the magnets

Currently developing a more modern approach using Machine-Learning

- "Train" a machine learning model with a similar method to the dynamic approach
- ML Algorithm creates reconstruction matrix for any Roman Pots momentum vector
- Neural Network / Graph Neural Network

*. Already included in ePIC detector framework
* Potentially quicker to train and retrain models than other frameworks
* C++ API ideal for working with ROOT and ePIC simulations
* PyTorch 2.0 just released with major performance improvements
* Large support ecosystem
* Ideal for quick prototyping of models, "research" focused option

Next Steps: Finish integrating existing method with ePIC framework, develop ML Algorithm

- Ongoing work to integrate the dynamic method described above with EICRecon and the ePIC framework
- Further development beginning now to try and develop a graph neural network with PyTorch
- We hope this machine-learning algorithm will compensate for the current issues with the dynamic method!

OMD from EICRecon

