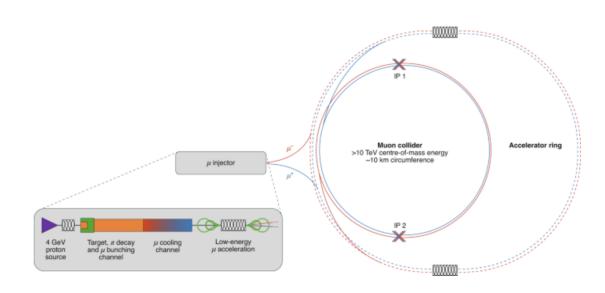
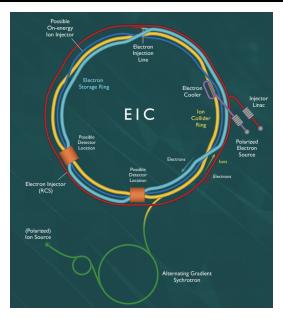
A Future Muon-Ion Collider at Brookhaven National Laboratory

Ethan Cline

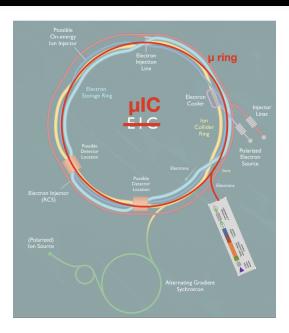
Center for Frontiers in Nuclear Science Stony Brook University Stony Brook,NY Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA


DIS 2023: March 28, 2023

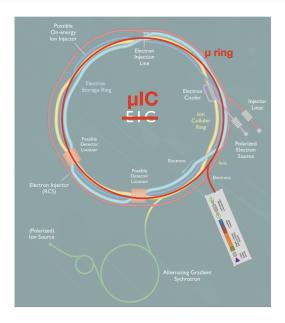
A Future Muon Collider



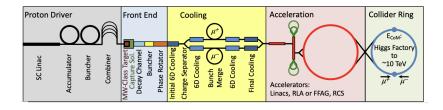
https://muoncollider.web.cern.ch/node/25


A Future Muon Collider

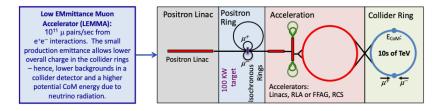
- A future muon collider has strong interest in the community
- Wide physics reach at $\sqrt{s} = 10$ TeV and beyond
- Several papers submitted as part of SNOWMASS process
- Significant R&D work necessary to prove feasibility
- MICE project at Rutherford lab demonstrated 6D cooling
- There is a rich physics program possible along the way to realizing a muon collider!


The EIC

A μ IC!



A μ IC!



- Build μ frontend as "proof of concept" for $\mu^+\mu^-$ collider
- Reuse EIC Ion beam
- Design to have variable μ energy, 18 GeV - 200 GeV

- Proton driven scheme
 - Proton on high Z target, produce π 's which decay to μ 's
 - μ 's have wide emittance, need to be cooled
 - Preferentially produce μ^+
 - Selecting polarized μ 's reduces luminosity

- e^+e^- annihilation scheme (LEMMA)
 - Muons produced at high energy
 - Low emittance, no cooling needed
 - Requires 45 GeV positron beam on electron target
 - Target heating and luminosity difficulties

- $\mu^+\mu^-$ production from high energy photons (Gamma Factory)
 - Impinge laser pulses on ion beam
 - $N_{\gamma} \approx 10^{16}/\text{s}$ backscattered photons at \approx 400 MeV
 - Impinge γ 's on stationary target to perform exclusive pion production $\gamma+p\to\pi^++n$ followed by pion decay
 - ullet Cooling not required as π production phase space significantly restricted

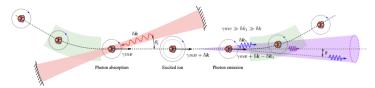
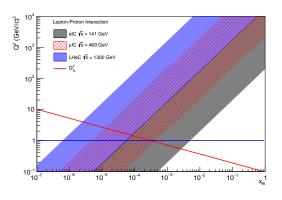
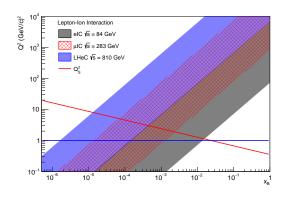


FIG. 20: The Gamma Factory concept: laser photons with the momentum k collide with ultrarelativistic partially stripped ions (with the relativistic Lorentz factor γ_L , mass m, velocity $v = \beta c$, where c is the velocity of light) circulating in a storage ring; resonantly scattered photons with the momentum $k_1 \gg k$ are emitted in a narrow cone with an opening angle $\theta \approx 1/\gamma_L$ in the direction of motion of the ion beam.

Gamma Factory - A. Apyan, M. Krasny, W. Płaczek, https://arxiv.org/pdf/2212.06311.pdf


- $\mu^+\mu^-$ production from high energy photons (BACKGAMMON)
 - Impinge laser pulses on 20 GeV electron beam Compton scattering
 - $N_{\gamma} \approx 10^{13}/\text{s}$ backscattered photons at ≈ 5 GeV
 - Impinge γ 's on stationary target to pair-produce $\mu^+\mu^-$ at high energy without need for cooling,
 - ullet Can create longitudinally polarized μ 's with circularly polarized photons
 - Could use future EIC electron beam!


E (GeV)	10	20	30
ω_2 (GeV)	1.54	5.33	10.59
$\sigma_{C} \ (10^{-25} \ \text{cm}^{2})$	5.48	4.74	4.25
$\mathcal{L}~(10^{38}~{\rm cm}^{-2}{ m -s}^{-1})$	1.04	1.04	1.04
$R (10^{13} \text{ s}^{-1})$	5.72	4.95	4.43

Backscattered photon energy, total Compton cross section, luminosity and production rate of backscattered photons as function of incident electron energy. Numbers from S. Mtingwa.

BACKGAMMON - S. Mtingwa and M. Strikman, Phys. Rev. Lett. 64, 1522 (1990)

Physics Reach

Left: Kinematic Reach of μ IC for μ p collisions. Right: Kinematic Reach of μ IC for μ Au collisions.

LHeC: https://arxiv.org/pdf/2007.14491.pdf EIC: https://arxiv.org/pdf/2103.05419.pdf

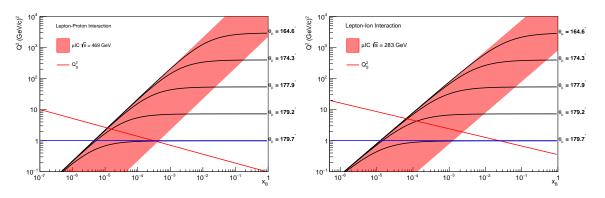
Muon Decay

- μ lifetime is 2.2×10^{-6} s
- At a beam energy of 18 GeV, this is extended to 3.6×10^{-4} s
- 33 laps around the RHIC ring in 1 lifetime (370 laps at 200 GeV beam)
 - Point in favor for a separate ring?
- Luminosity and storage are a problem
- Electrons from decay go almost in beam direction, are uniformly distributed, have unknown energy, and scatter with beam hadrons
 - Vertical chicane helps here, but detailed study needed for these kinematics
 - See talk by D. Acosta this afternoon!

Luminosity in Proton Driven Scheme

$$\mathcal{L}_{\mu p} = \frac{N^{\mu} N^{p} \min[f_{c}^{\mu}, f_{c}^{p}]}{4\pi \max[\sigma_{x}^{\mu}, \sigma_{x}^{p}] \max[\sigma_{y}^{\mu}, \sigma_{y}^{p}]} H_{hg}$$

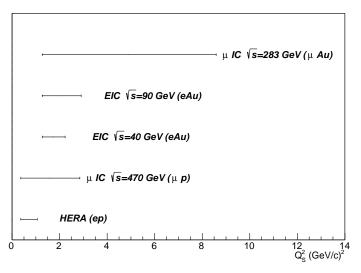
$$\tag{1}$$

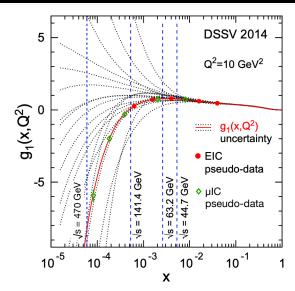

$$\sigma_{x,y} = \sqrt{\beta * \varepsilon / \gamma} \tag{2}$$

$$f_c^{\mu} = N_{\text{laps}*f_{\text{rep}}} \tag{3}$$

	proton driven muon production	proton
E (GeV)	200	275
$N^{\mu,\hat{p}} (10^{11})$	30	3
γ	2000	275
$arepsilon$ (μ m)	140 (25)	0.2
eta (cm)	1.3 (1)	5
$\sigma_{x,y}\;(\mum)$	30 (10)	6
Number of laps	680	∞
$f_c^{\mu}~(\mathrm{s}^{-1})$	10,350	N/A
$\mathcal{L}_{\mu p}$ (cm $^{-2}$ s $^{-1}$)	$8 \times 10^{31} \ (5 \times 10^{32})$	

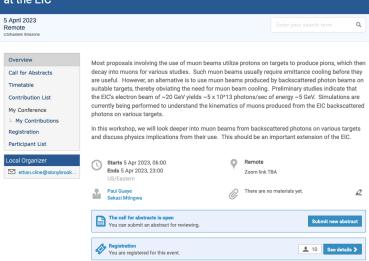
Luminosity of μp collisions


Scattered Muon Reach


Left: Lines of constant θ at the μ IC for μ p collisions. Right: Lines of constant θ at the μ IC for μ Au collisions.

Saturation Scale

Saturation scale in the GBW model

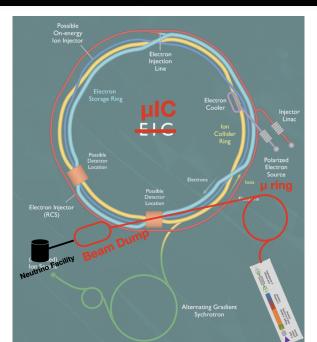

- Extraction of g1 from DSSV collaboration
- EIC pseudo-data 10 fb⁻¹ sampled luminosity, μ IC pseudo-data from 0.9 fb⁻¹
- Figure reproduced from: https://arxiv.org/abs/1708.01527

Summary

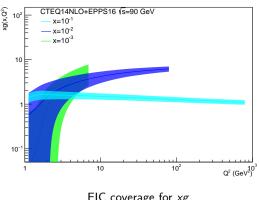
- Muon collider collaborations have clearly demonstrated need for future collider
- R&D on a high-energy, high-intensity source of muons is desirable
- EIC design underway via CD process
- Possible synergy between nuclear and particle physics community at the site of the future EIC
- Rich physics program with μ IC
- See talk by D. Acosta later this afternoon

CFNS Workshop

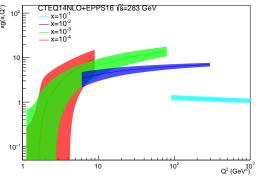
Using muons from backscattered photons on targets for various studies at the EIC



https://indico.bnl.gov/event/17909/


Thank you!

Any Questions?


A μ IC v2!

Measuring the Gluon PDF in Ions

EIC coverage for xg

 μ IC coverage for xg