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H1 at HERA
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• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany 
• Major goal was to study internal structure of the proton through deep inelastic scattering
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Lepton Jet Asymmetry
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•  = Total transverse 
momentum


•   = Transverse Momentum 
Difference


•  = Angle between  and 

q⊥

P⊥

ϕ q⊥ P⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

cos(ϕ) = ( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ |

ϕ = acos[( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ | ]

Key Ingredients:

Momentum conservation:

Dijet Example

, and therefore  will tend to point in the direction of the jet 
Darker colors indicate probability of gluon emission

ki q⊥

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ
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Lepton Jet Measurement
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• Final state lepton and jet are mostly back-to-back

- Significant interest in studying transverse momentum dependent (TMD) parton 

distributions


• Total transverse momentum of the outgoing system , 
is typically small but nonzero 

• Imbalance can come from perturbative initial and final state radiation 

- e.g. Emission of soft gluon with momentum 

- unrelated to TMDs or intrinsic transverse momentum of target gluons


• Depending on kinematics, soft gluon radiation can dominate

- 

- Radiative corrections enhanced approximately as  

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

k⊥g

P⊥ ≫ q⊥
(αs ln2 P2

⊥/q2
⊥)n

⃗kl⊥

⃗kJ⊥

− ⃗q⊥ = ⃗ksg⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ

Description
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Motivation
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1. Probes soft gluon radiation 

• Soft gluon radiation can be the primary contribution to asymmetry for 

certain kinematics

- Hard gluon radiation is present, but is power suppressed


2. Asymmetry is perturbative

- Opportunity to compare unfolded H1 data to soft gluon resumption

- Precision measurements of QCD


1. , as well as relevance to various jet measurements


3. May represent a vital reference for other signals, in 
particular TMD PDF measurements


- In TMD factorization framework, one can factorize contributions from 
transverse momentum dependent (TMD) PDFs and Soft gluon radiation


4. Observable is sensitive to gluon saturation phenomena, 
possibly measurable at the EIC

S(g)

αs
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H1 Data
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• Same data / selection / unfolding as arXiv:2108.12376

- “Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 

detector using machine learning for unfolding”


• H1 Data from 2006 and 2007 periods at 130 

- Positron-proton collisions


• Fiducial Cuts:

- 

- 

-

pb−1

0.2 < y < 0.7
Q2 > 150 GeV2

pjet
T > 10 GeV

- 

- 

- 


-

−1 < ηlab < 2.5
kT, R = 1.0
q⊥/Q < 0.25
q⊥/pT,jet < 0.3

Cut on  to satisfy : q⊥/pT,jet P⊥ ≫ q⊥
pT,jet ≈ P⊥/2

Taking the leading jet

https://arxiv.org/abs/2108.12376
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MultiFold
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arXiv:2108.12376 

Multifold already used to unfold:  
pe

x , pe
y , pe

z , pjet
T , ηjet, ϕjet, Δϕjet, qjet

T /Qpjet
T , ηjet, ϕjetpe

x , pe
y

Extracted from the same phase-space as Yao’s 
analysis, but is a different observable

Detector-level MC

Si
m

ul
at

io
n

N
at

ur
e

Detector-level

Data

Particle-level

Particle-level MC

Truth

Pull 
Weights

Push 
Weights

Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

RAPGAP
DJANGOH

PYTHIA

GEANT

Jetp

e e

Jetp

e e

Geant3

Rapgap, 
Djangoh, 

…
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H1 Unfolded Data
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• Leading moment is , expected in lepton-jet events

• All harmonics approach 0.0 at higher , may compromise 

• Rapgap and Django, tuned to HERA II, good agreement

•Note small absolute value of central values

⟨ cos(ϕ) ⟩
q⊥ P⊥ ≫ q⊥
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Investigation of Model Bias vs.  q⊥ [GeV]
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• Leading uncertainty is model bias in the unfolding for  and 

• Difference in the result when unfolding using RAPGAP and DJANGO

• Reporting Abs. Errors; central values are very close to 0.0

• The Total Uncertainty is quite stable between harmonics

cos(2ϕ) cos(3ϕ)
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Two Sets of Calculations
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⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

R=1.0

 =140 GeV,  = 20 GeV, 
 = 1.5,  = 25 GeV 

Radiative corrections 
enhanced  

s P⊥
yl Q

∝ (αs ln2 P2
⊥/q2

⊥)n

4

f(n) ' ln(b20/n
2) with b0 = 2e��E (�E is the Euler con-

stant). Also note that g(nR) ⇡ n2R2/4 when nR ⌧ 1,
while g(nR) ⇡ ln(n2R2/b20) in the limit nR � 1. This
indicates that cn vanishes when nR � 1.

When R is large ⇠ O(1), we should return to (7). The
Fourier coe�cients can be evaluated numerically as fol-
lows (see (A3))

cn =
2

⇡

Z R

0
d�

cos�

sin�


(⇡ � �)� tan�1

✓
ey+ � cos�

sin�

◆

+tan�1

✓
ey� � cos�

sin�

◆�
cosn�

+
2

⇡

Z ⇡

R
d�

cos�

sin�
(⇡ � �) cosn�

�
2

⇡

Z R

0
d� y+ cosn�, (12)

where y± = ±
p
R2 � �2. For example, for R = 1, we

have c0 ' �0.25, c1 = 0.78 and c2 = �0.30. As shown in
Fig. 3, cn decreases approximately as ln 1/R2 for small n
values, while oscillations around zero start to appear for
large-n coe�cients.

We now extend the above one-loop results to all orders
in the TMD framework by resumming the double and
single logarithms in Q2/q2?. This is appropriately carried
out in the Fourier transformed b?-space. The resummed
azimuthal averaged cross section reads [33],

d5�ep!e0qX

dy`d2P?d2q?
=

X

q

�eq
0

Z
d2b?
(2⇡)2

eiq?·b?xqfq(xq, µb)

⇥e� Sudeq(b?,P?,R) , (13)

where µb ⌘ b0/b? with b0 = 2e��E and �E the Euler
constant. Here and in the following, we neglect the high
order corrections to the hard factor in the resummation
formulas. The Sudakov form factor is defined as

Sudeq =

Z Q

µb

dµ

µ

↵s(µ)CF

⇡


ln

Q2

µ2
+ ln

Q2

P 2
?

�
3

2
+ c0(R)

�
. (14)

To derive the resummation result for the azimuthal angle
dependent di↵erential cross section, we first compute the
Fourier transfer of the soft gluon radiation contribution
at one-loop order from Eq. (4), by applying the Jacobi-
Anger expansion,

eiz cos(�) = J0(z) + 2
1X

n=1

inJn(z) cos(n�) , (15)

and the integration formula,
Z 1

0

d|q0?|

|q0?|
Jn(|q

0
?||b?|) =

1

n
. (16)

Importantly, the q0?-integral gives a constant although
originally in momentum space the angular dependent
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FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at

d5�ep!e0qX

dy`d2P?d2q?
=

X

n=1

2 cos(n�)

Z
b?db?
(2⇡)

Jn(|q?||b?|)

⇥

X

q

�eq
0 xqfq(xq, µb)

CF↵scn
n⇡

⇥e� Sudeq(b?,P?,R) . (17)

An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

arXiv:2106.053
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FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at
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An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

⟨n cos(nϕ)⟩ is plotted

arXiv: 2211.01647

Harmonics of parton saturation with the inputs GBW model and TMD calculation CT18A 

R=0.4

Soft Gluon Resummation 

https://arxiv.org/abs/2211.01647
https://arxiv.org/pdf/hep-ph/9807513.pdf
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H1 Unfolded Data
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• All Calculations agree with data+uncertainty for  GeV 
•Differences could be due to sample bin average within the fiducial cuts 
•CT18A is also a TMD calculation, disagreement could also be in 

kinematics constraints 
•GBW and CT18A

q⊥ < 2.0
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H1 Unfolded Data
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• Three harmonics of the azimuthal angular asymmetry between the lepton 
and leading jet as a function of .   
• Predictions from multiple simulations as well as a pQCD calculation are 

shown for comparison.

q⊥
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Conclusions
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• Promising measurement to probe soft gluon radiation

- Important reference for lepton-jet DIS measurements!

- Comparisons to 2 pQCD calculations, and 3 generators, agree within  GeV

- Theory has qualitatively very different shape overall

- May point to larger non-perturbative contributions to this observable


• MultiFold

- First recycling of unfolded event weights! Reusability is a huge advantage of MultiFold

- This work presents a measurement of moments, requiring the unbinned unfolding! 
- model bias may be due regularized unfolding procedure (i.e. IBU may exhibit similar bias) 


• Outlook:

- New analysis with higher  may suppress non-perturbative contributions, and 

potentially close the gap between theory and data

- Harmonics of Parton Saturation, by Tong, et al., are working on a set of NLO order 

calculations with our kinematics and jet R= 1.0 
‣ arXiv:2211.01647

q⊥ < 2.0

pT,jet

https://arxiv.org/abs/2211.01647
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END
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Backup
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Systematic Uncertainties
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• Model Dependance:

- The bias of the unfolding procedure is determined by taking the difference in the 

result when unfolding using RAPGAP and DJANGO

- The two generators have different underlying physics, thus providing a realistic 

evaluation of the procedure bias


• QED Radiation Corrections

- Difference of correction between RAPGAP and DJANGO

- Take RAPGAP with and without QED corrections

- Take DJANGO with and without QED corrections


• Systematic uncertainties are determined by varying an aspect of 
the simulation and repeating the unfolding

- These values detail the magnitude of variation:

- HFS-object energy scale: 

- HFS-object azimuthal angle:  mrad

- Scattered lepton azimuthal:  mrad

- Scattered lepton energy: 

±1 %
±20

±1
±0.5 − 1.0 %
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Interesting Comparison
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Similar framework as the previous Soft Gluon Resumption calculation (SCET), but with 
parameters describing gluon saturation (Colored Glass Condensate).
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Backup Further Background
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• Machine learning (OmniFold) is used to perform an 8-dimensional, 
unbinned unfolding. Present four, binned results:


• Use the 8-dimensional result to explore the  dependence and any other 
observables that can be computed from the electron-jet kinematics

Q2

Extracted from the same phase-space as Yao’s analysis, 
but reporting a different observable
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1. ωn(m) = νpush
n−1 (m)L[(1,Data), (νpush

n−1 , Sim.)](m)
ωpull

n (t) = ωn(m)

• Detector level simulation is weighted to match the data


•   approximated by  classifier trained 
to distinguish the Data and Sim.
L[(1,Data), (νpush

n−1 , Sim.)](m)

• Transform weights to a proper function of the generated events to 
create a new simulation


•  approximated by classifier 
trained to distinguish Gen. with pulled weights from Gen. using

 

L[(ωpull
n , Gen.), (νn−1, Gen.)](t)

weightsold / weightsnew

2. νn(t) = ν0(t)L[(ωpull
n , Gen.), (ν0, Gen.)](t)

Each iteration of step 2 learns the correction from the original  weights 
Advantage: Easier implementation, no need to store previous  model 

Disadvantage: Learning correction from  is more computationally expensive

ν0
νn

ν0

OmniFold
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IBU Generalization
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Differential Cross Section
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Credit: Fanyi Zhao
Note: slightly different angle definition, but 

background still applies ]


