Lepton-Jet Azimuthal Asymmetry in H1 using MultiFold

Fernando Torales Acosta
Benjamin Nachman
on behalf of the H 1 Collaboration

H1 at HERA

- H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany
- Major goal was to study internal structure of the proton through deep inelastic scattering

$$
e(k)+q\left(p_{1}\right) \rightarrow e^{\prime}\left(k_{\ell}\right)+j e t\left(k_{J}\right)+X
$$

Lepton Jet Asymmetry

Key Ingredients:

- $q_{\perp}=$ Total transverse momentum

$$
\begin{gathered}
\vec{q}_{\perp}=\vec{k}_{\ell \perp}+\vec{k}_{J \perp} \\
\overrightarrow{P_{\perp}}=\left(\vec{k}_{\ell \perp}-\vec{k}_{J \perp}\right) / 2
\end{gathered}
$$

- $P_{\perp}=$ Transverse Momentum Difference

$$
\phi=\operatorname{acos}\left[\left(\overrightarrow{q_{\perp}} \cdot \overrightarrow{P_{\perp}}\right) /\left|\overrightarrow{q_{\perp}}\right|\left|\overrightarrow{P_{\perp}}\right|\right]
$$

$$
\cos (\phi)=\left(\vec{q}_{\perp} \cdot \overrightarrow{P_{\perp}}\right) /\left|\overrightarrow{q_{\perp}}\right|\left|\overrightarrow{P_{\perp}}\right|
$$

- $\phi=$ Angle between q_{\perp} and P_{\perp}

k_{i}, and therefore q_{\perp} will tend to point in the direction of the jet Darker colors indicate probability of gluon emission

Lepton Jet Measurement

Description

- Final state lepton and jet are mostly back-to-back
- Significant interest in studying transverse momentum dependent (TMD) parton distributions
- Total transverse momentum of the outgoing system $\vec{q}_{\perp}=\vec{k}_{\ell \perp}+\vec{k}_{J \perp}$, is typically small but nonzero
- Imbalance can come from perturbative initial and final state radiation
- e.g. Emission of soff gluon with momentum $k_{1 g}$
- unrelated to TMDs or intrinsic transverse momentum of target gluons
- Depending on kinematics, soft gluon radiation can dominate
- $P_{\perp} \gg q_{\perp}$
- Radiative corrections enhanced approximately as $\left(\alpha_{s} \ln ^{2} P_{\perp}^{2} / q_{\perp}^{2}\right)^{n}$

$$
e(k)+q\left(p_{1}\right) \rightarrow e^{\prime}\left(k_{\ell}\right)+j e t\left(k_{J}\right)+X
$$

Motivation

1. Probes soft gluon radiation $S(g)$

- Soft gluon radiation can be the primary contribution to asymmetry for certain kinematics
- Hard gluon radiation is present, but is power suppressed

2. Asymmetry is perturbative

- Opportunity to compare unfolded H1 data to soft gluon resumption
- Precision measurements of QCD

1. α_{s}, as well as relevance to various jet measurements
2. May represent a vital reference for other signals, in particular TMD PDF measurements

- In TMD factorization framework, one can factorize contributions from transverse momentum dependent (TMD) PDFs and Soft gluon radiation

4. Observable is sensitive to gluon saturation phenomena, possibly measurable at the EIC

H1 Data

- Same data / selection / unfolding as arXiv:2108.12376
- "Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 detector using machine learning for unfolding"
- H1 Data from 2006 and 2007 periods at $130 \mathrm{pb}^{-1}$
- Positron-proton collisions
- Fiducial Cuts: $\quad--1<\eta_{\text {lab }}<2.5$
- $0.2<y<0.7 \quad-\mathrm{k}_{\mathrm{T}}, R=1.0$
- $Q^{2}>150 \mathrm{GeV}^{2}-q_{\perp} / Q<0.25$
- $p_{T}^{\text {jet }}>10 \mathrm{GeV} \quad-q_{\perp} / p_{\mathrm{T}, \text { jet }}<0.3$

Taking the leading jet
Cut on $q_{\perp} / p_{\mathrm{T}, j e t}$ to satisfy $P_{\perp} \gg q_{\perp}$:

$$
p_{\mathrm{T}, \mathrm{jet}} \approx P_{\perp} / 2
$$

MultiFold

 analysis, but is a different observable

H1 Unfolded Data

- Leading moment is $\langle\cos (\phi)\rangle$, expected in lepton-jet events
- All harmonics approach 0.0 at higher q_{\perp}, may compromise $P_{\perp} \gg q_{\perp}$
- Rapgap and Django, tuned to HERA II, good agreement
- Note small absolute value of central values

Investigation of Model Bias vs. $q_{\perp}[\mathrm{GeV}]$

- Leading uncertainty is model bias in the unfolding for $\cos (2 \phi)$ and $\cos (3 \phi)$
- Difference in the result when unfolding using RAPGAP and DJANGO
- Reporting Abs. Errors; central values are very close to 0.0
- The Total Uncertainty is quite stable between harmonics

Two Sets of Calculations

$$
\begin{gathered}
\vec{q}_{\perp}=\vec{k}_{\ell \perp}+\vec{k}_{J \perp} \\
\overrightarrow{P_{\perp}}=\left(\vec{k}_{\ell \perp}-\vec{k}_{J \perp}\right) / 2 \\
\sqrt{s}=140 \mathrm{GeV}, P_{\perp}=20 \mathrm{GeV}, \\
y_{l}=1.5, Q=25 \mathrm{GeV} \\
\text { Radiative corrections } \\
\text { enhanced } \propto\left(\alpha_{s} \ln ^{2} P_{\perp}^{2} / q_{\perp}^{2}\right)^{n} \\
\text { Soft Gluon Resummation }
\end{gathered}
$$

Harmonics of parton saturation with the inputs GBW model and TMD calculation CT18A

H1 Unfolded Data

- All Calculations agree with data+uncertainty for $q_{\perp}<2.0 \mathrm{GeV}$
- Differences could be due to sample bin average within the fiducial cuts
- CT18A is also a TMD calculation, disagreement could also be in kinematics constraints
- GBW and CT18A

H1 Unfolded Data

- Three harmonics of the azimuthal angular asymmetry between the lepton and leading jet as a function of q_{\perp}.
- Predictions from multiple simulations as well as a pQCD calculation are shown for comparison.

Conclusions

- Promising measurement to probe soft gluon radiation
- Important reference for lepton-jet DIS measurements!
- Comparisons to 2 pQCD calculations, and 3 generators, agree within $q_{\perp}<2.0 \mathrm{GeV}$
- Theory has qualitatively very different shape overall
- May point to larger non-perturbative contributions to this observable
- MultiFold
- First recycling of unfolded event weights! Reusability is a huge advantage of MultiFold
- This work presents a measurement of moments, requiring the unbinned unfolding!
- model bias may be due regularized unfolding procedure (i.e. IBU may exhibit similar bias)
- Outlook:
- New analysis with higher $p_{\mathrm{T}, \text { jet }}$ may suppress non-perturbative contributions, and potentially close the gap between theory and data
- Harmonics of Parton Saturation, by Tong, et al., are working on a set of NLO order calculations with our kinematics and jet $R=1.0$
- arXiv:2211.01647

END

Backup

Systematic Uncertainties

- Model Dependance:
- The bias of the unfolding procedure is determined by taking the difference in the result when unfolding using RAPGAP and DJANGO
- The two generators have different underlying physics, thus providing a realistic evaluation of the procedure bias
- QED Radiation Corrections
- Difference of correction between RAPGAP and DJANGO
- Take RAPGAP with and without QED corrections
- Take DJANGO with and without QED corrections
- Systematic uncertainties are determined by varying an aspect of the simulation and repeating the unfolding
- These values detail the magnitude of variation:
- HFS-object energy scale: $\pm 1 \%$
- HFS-object azimuthal angle: ± 20 mrad
- Scattered lepton azimuthal: $\pm 1 \mathrm{mrad}$
- Scattered lepton energy: $\pm 0.5-1.0 \%$

Interesting Comparison

Similar framework as the previous Soft Gluon Resumption calculation (SCET), but with parameters describing gluon saturation (Colored Glass Condensate).

Backup Further Background

- Machine learning (OmniFold) is used to perform an 8-dimensional, unbinned unfolding. Present four, binned results:
- Use the 8-dimensional result to explore the Q^{2} dependence and any other observables that can be computed from the electron-jet kinematics

Extracted from the same phase-space as Yao's analysis, but reporting a different observable

OmniFold

1. $\omega_{n}(m)=\nu_{n-1}^{\text {push }}(m) L\left[(1\right.$, Data $\left.),\left(\nu_{n-1}^{\text {push }}, \operatorname{Sim}.\right)\right](m)$

$$
\omega_{n}^{\text {pull }}(t)=\omega_{n}(m)
$$

- Detector level simulation is weighted to match the data
- $L\left[(1\right.$, Data $\left.),\left(\nu_{n-1}^{\text {push }}, \operatorname{Sim}.\right)\right](m)$ approximated by classifier trained to distinguish the Data and Sim.

$$
\text { 2. } \nu_{n}(t)=\nu_{0}(t) L\left[\left(\omega_{n}^{\text {pull }}, \text { Gen. }\right),\left(\nu_{0}, \text { Gen. }\right)\right](t)
$$

- Transform weights to a proper function of the generated events to create a new simulation
- $L\left[\left(\omega_{n}^{\text {pull }}\right.\right.$, Gen. $),\left(\nu_{n-1}\right.$, Gen. $\left.)\right](t)$ approximated by classifier trained to distinguish Gen. with pulled weights from Gen. using weights $_{\text {old }} /$ weights $_{\text {new }}$

Each iteration of step 2 learns the correction from the original ν_{0} weights
Advantage: Easier implementation, no need to store previous ν_{n} model Disadvantage: Learning correction from ν_{0} is more computationally expensive

IBU Generalization

$$
\begin{aligned}
t_{j}^{(n)} & =\sum_{i} \operatorname{Pr}_{n-1}(\text { truth is } j \mid \text { measure } i) \operatorname{Pr}(\text { measure } i) \\
& =\sum_{i} \frac{R_{i j} t_{j}^{(n-1)}}{\sum_{k} R_{i k} t_{k}^{(n-1)}} \times m_{i},
\end{aligned}
$$

$$
L\left[(w, X),\left(w^{\prime}, X^{\prime}\right)\right](x)=\frac{p_{(w, X)}(x)}{p_{\left(w^{\prime}, X^{\prime}\right)}(x)},
$$

Differential Cross Section

- Back-to-back electron-jet production from $e p$ collision,

$$
\begin{gathered}
e(l)+p(P) \rightarrow e\left(l^{\prime}\right)+J_{q}\left(p_{J}\right)+X \\
\frac{d \sigma}{d^{2} \boldsymbol{p}_{T} d y_{J} d \phi_{J} d^{2} \boldsymbol{q}_{T}}=\frac{d \sigma}{2 \pi d^{2} \boldsymbol{p}_{T} d y_{J} q_{T} d q_{T}}\left[1+2 \sum_{n=1}^{\infty} v_{n}\left(p_{T}, y_{T}\right) \cos \left(n\left(\phi_{q}-\phi_{J}\right)\right)\right]
\end{gathered}
$$

q_{T} : transverse momentum imbalance

$$
\boldsymbol{q}_{T}=\boldsymbol{l}_{T}^{\prime}+\boldsymbol{p}_{J T}
$$

p_{T} : jet transverse momentum
y_{J} : jet rapidity

Note: slightly different angle definition, but background still applies]

